Selected tight-binding models

Andriy Zhugayevych (http://zhugayevych.me)
 December 18, 2022

1 Abbreviations and notations 1
2 Graphene π-system 2
3 Graphene σ-valence band 3
4 Blue phosphorene valence band 4
5 Honeycomb lattice with inversion 6
6 Triangular lattice with inversion 7
7 Diamond σ-valence band 8
8 K4 lattice or Laves graph 9
9 Orthorhombic lattice with K4 topology 10
Appendix 11
A Nonorthogonal basis set 11
B Participation ratio 11
C Additional figures and tables 12
References 19

§1. Abbreviations and notations

a3p	Ahlrichs triple- ζ basis Def2-TZVP	NAO	Natural Atomic Orbital
AO	Atomic Orbital	NBO	Natural Bonding Orbital
CB	Conduction Band	NO	Natural Orbital
DFT	Density Functional Theory	NTO	Natural Transition Orbital
HOMO	Highest Occupied Molecular Orbital	PAW	Projector Augmented Wave
LMO	Localized Molecular Orbital	p2p	Pople double- ζ polarized basis 6-31G*
LP	Lone Pair	SCF	Self-Consistent Field
LUMO	Lowest Unoccupied Molecular Orbital	TB	Tight Binding
MO	Molecular Orbital	VB	Valence Band

The inverse mass tensor reported here should be divided by $\hbar^{2} / m_{\mathrm{e}} \approx 7.6200 \mathrm{eV} \AA^{2}$ to obtain dimensionless masses.

§2. Graphene π-system

Figure 1: Symmetry unique TB elements of graphene π-system. See also Fig. 29.

Figure 2: Energy bands of graphene π-system for a series of models of increasing accuracy.

The symmetry unique TB elements are shown in Fig. 1. Because there are 5 high-symmetry energy reference values at 3 k -points: Γ, K and M , the largest 'fittable' model includes the onsite energy ε_{0} and 4 transfer integrals including 3 directly interacting pairs: t_{1}, t_{2}, t_{3}. The 4th integral should be t_{4} to balance the accuracy of diagonal and off-diagonal Hamiltonian matrix elements containing even and odd (by chemical distance) transfer integrals respectively. The resulting Hamiltonian is given by

$$
\begin{gather*}
H_{11}=H_{22}=\varepsilon_{0}+2 t_{2}\left(\cos k_{1}+\cos k_{2}+\cos k_{3}\right)+2 t_{4}\left(\cos \left(k_{1}-k_{2}\right)+\cos \left(k_{2}-k_{3}\right)+\cos \left(k_{3}-k_{1}\right)\right), \\
H_{12}=t_{1}\left(1+\mathrm{e}^{\mathrm{i} k_{1}}+\mathrm{e}^{-\mathrm{i} k_{2}}\right)+t_{3}\left(\mathrm{e}^{\mathrm{i}\left(k_{1}-k_{2}\right)}+\mathrm{e}^{\mathrm{i} k_{3}}+\mathrm{e}^{-\mathrm{i} k_{3}}\right) \tag{2.1}
\end{gather*}
$$

where $k_{3}=-k_{1}-k_{2}$. Therefore $E_{1,2}=H_{11} \mp\left|H_{12}\right|$. In high-symmetry direction $k_{1}=k_{2}=k$:

$$
\begin{equation*}
H_{11}=\varepsilon_{0}+2 t_{2}(2 \cos k+\cos 2 k)+2 t_{4}(1+2 \cos 3 k), \quad H_{12}=t_{1}(1+2 \cos k)+t_{3}(1+2 \cos 2 k) . \tag{2.2}
\end{equation*}
$$

In high-symmetry direction $k_{1}=k, k_{2}=0$:

$$
\begin{equation*}
H_{11}=\varepsilon_{0}+2 t_{2}(1+2 \cos k)+2 t_{4}(2 \cos k+\cos 2 k), \quad H_{12}=t_{1}\left(2+\mathrm{e}^{\mathrm{i} k}\right)+t_{3}\left(2 \mathrm{e}^{\mathrm{i} k}+\mathrm{e}^{-\mathrm{i} k}\right) . \tag{2.3}
\end{equation*}
$$

In high-symmetry points ($k=\{0, \pi, 2 \pi / 3\}$):

$$
\begin{gather*}
E(1 / 3,1 / 3)=\varepsilon_{0}-3 t_{2}+6 t_{4}, \quad E_{1,2}(0,0)=\varepsilon_{0}+6 t_{2}+6 t_{4} \mp\left(3 t_{1}+3 t_{3}\right), \\
E_{1,2}(1 / 2,0)=E_{1,2}(1 / 2,1 / 2)=\varepsilon_{0}-2 t_{2}-2 t_{4} \mp\left(t_{1}-3 t_{3}\right) . \tag{2.4}
\end{gather*}
$$

In particular, if we fit parameters at these high-symmetry points to PBE/p2p calculations, we obtain (in eV):

$$
\varepsilon_{0}=-3.87, t_{1}=-2.87, t_{2}=0.21, t_{3}=-0.27, t_{4}=0.06
$$

giving band structure visually coinciding with the exact one. Although t_{4} is small, neglecting it results in large error at M-point. The minimal model (t_{1} only) is still qualitatively accurate. Exact TB integrals fade with distance quickly:

$$
\begin{aligned}
\varepsilon_{0}=-3.778, t_{1} & =-2.887, t_{2}=0.218, t_{3}=-0.239, t_{4}=0.046, t_{5 c}=-0.029, t_{4 b}=-0.015, \\
t_{3 b} & =0.004, t_{5 b}=0.004, t_{6}=0.003, t_{6 b}=-0.002, t_{5}=0.001, \ldots
\end{aligned}
$$

§3. Graphene σ-valence band

Figure 3: Symmetry unique TB elements of graphene σ-VB. See also Fig. 30.

- 2-param - 3-param - 5-param - exact

Figure 4: Energy bands of graphene σ-VB for a series of models of increasing accuracy.

The symmetry unique TB elements are shown in Fig. 3. There are 7 high-symmetry energy reference values at 3 k-points: Γ, K and M . At our best, we use 5 -parameter model including 5 independent transfer integrals: $t_{1}, t_{2}, t_{2 b}, t_{3}$ and $t_{4 d}$. Other nonzero integrals include $t_{3 b}=-t_{3} / 2, t_{3 c}=t_{3} / 2, t_{4 c}=t_{3} / 2, t_{4}=-t_{3} / 3, t_{5}=t_{3} / 9$, $t_{6}=-t_{3} / 27$. This model fits high-symmetry points with 10 meV accuracy. With up to third-order terms, the Hamiltonian is given by

$$
\begin{gather*}
H_{11}\left(k_{1}, k_{2}, k_{3}\right)=\varepsilon_{0}+2 t_{2}\left(\cos k_{1}+\cos k_{2}\right)+2 t_{3 c} \cos k_{3} \\
H_{12}=t_{1}\left(1+\mathrm{e}^{\mathrm{i} k_{2}}\right)+t_{2 b}\left(\mathrm{e}^{-\mathrm{i} k_{1}}+\mathrm{e}^{-\mathrm{i} k_{3}}\right)+t_{3}\left(\mathrm{e}^{-\mathrm{i} k_{2}}+\mathrm{e}^{\mathrm{i} 2 k_{2}}\right)+t_{3 b}\left(\mathrm{e}^{\mathrm{i} k_{1}}+\mathrm{e}^{\mathrm{i} k_{3}}+\mathrm{e}^{\mathrm{i}\left(k_{2}-k_{1}\right)}+\mathrm{e}^{\mathrm{i}\left(k_{2}-k_{3}\right)}\right) \\
H_{22}\left(k_{1}, k_{2}, k_{3}\right)=H_{11}\left(k_{2}, k_{3}, k_{1}\right), \quad H_{33}\left(k_{1}, k_{2}, k_{3}\right)=H_{11}\left(k_{3}, k_{1}, k_{2}\right) \\
H_{23}\left(k_{1}, k_{2}, k_{3}\right)=H_{12}\left(k_{2}, k_{3}, k_{1}\right), \quad H_{31}\left(k_{1}, k_{2}, k_{3}\right)=H_{12}\left(k_{3}, k_{1}, k_{2}\right), \tag{3.1}
\end{gather*}
$$

where $k_{3}=-k_{1}-k_{2}$. In high-symmetry points:

$$
\begin{align*}
E_{1,2}(1 / 3,1 / 3) & =\varepsilon_{0}+t_{1}-2 t_{2}-2 t_{2 b}-2 t_{3}+2 t_{3 b}-t_{3 c}, \tag{3.2}\\
E_{3}(1 / 3,1 / 3) & =\varepsilon_{0}-2 t_{1}-2 t_{2}+4 t_{2 b}+4 t_{3}-4 t_{3 b}-t_{3 c}, \tag{3.3}\\
E_{1}(0,0) & =\varepsilon_{0}+4 t_{1}+4 t_{2}+4 t_{2 b}+4 t_{3}+8 t_{3 b}+2 t_{3 c}, \tag{3.4}\\
E_{2,3}(0,0) & =\varepsilon_{0}-2 t_{1}+4 t_{2}-2 t_{2 b}-2 t_{3}-4 t_{3 b}+2 t_{3 c} \tag{3.5}\\
E_{1}(1 / 2,0) & =\varepsilon_{0}+2 t_{1}-2 t_{2 b}+2 t_{3}-4 t_{3 b}-2 t_{3 c}, \tag{3.6}\\
E_{2}(1 / 2,0) & =\varepsilon_{0}-4 t_{2}+2 t_{3 c} \tag{3.7}\\
E_{3}(1 / 2,0) & =\varepsilon_{0}-2 t_{1}+2 t_{2 b}-2 t_{3}+4 t_{3 b}-2 t_{3 c} . \tag{3.8}
\end{align*}
$$

In particular, if we fit 5 -parameter model to $\mathrm{PBE} / \mathrm{p} 2$ p calculations, we obtain (in eV):

$$
\varepsilon_{0}=-14.97, t_{1}=-2.19, t_{2}=0.55, t_{2 b}=-0.52, t_{3}=-0.14, t_{4 d}=0.03
$$

giving band structure visually coinciding with the exact one. If we neglect 4-order integrals we come to reasonably accurate 3 -parameter model: t_{1}, t_{2}, t_{3} with $t_{2 b}=-t_{2}, t_{3 b}=-t_{3} / 2$ and $t_{3 c}=t_{3} / 2$. The minimal is the 2-parameter model: t_{1} and t_{2} with $t_{2 b}=-t_{2}$. Exact TB integrals fade with distance quickly:

$$
\begin{gathered}
\varepsilon_{0}=-14.965, t_{1}=-2.162, t_{2}=0.555, t_{2 b}=-0.522, t_{3}=-0.157, t_{3 b}=0.072, t_{3 c}=-0.082, t_{4}=0.049 \\
t_{4 c}=-0.049, t_{4 d}=0.024, t_{5 c}=-0.020, t_{4 b}=-0.010, t_{6}=0.008, t_{5 b}=0.005, t_{6 b}=-0.002, \ldots
\end{gathered}
$$

§4. Blue phosphorene valence band

Figure 5: Symmetry unique TB elements of graphene atoms + bonds system. Here atom-atom elements are labeled with ' A ' and colored in green, bond-bond elements are labeled with ' B ' and colored in red, and atombond elements are colored in blue. Similar to other figures, the number in the labels shows chemical distance whereas the small letter after it indicates radial series. This set is complete to dimer separation 6.75 bond lengths and chemical distance 8. See also Fig. 31.

The valence band of 'blue' allotrope of phosphorene consists of σ-bonds and lone pairs, and thus its TB Hamiltonian has the same symmetry as TB Hamiltonian of atoms and bonds in graphene lattice, in the sense that the extra symmetry elements of $\mathrm{p} 6 / \mathrm{mmm}$ layer group of graphene compared to $\mathrm{p}-3 \mathrm{~m} 1$ group of phosphorene are factorized out as irrelevant internal symmetries. The symmetry unique TB elements are shown in Fig. 5.

There are 12 high-symmetry energy reference values at 3 k -points: Γ, K and M . However, those of them which intermix atoms and sites contain irreducible two-dimensional matrices.

- PBE - B3LYP - HSE06 - PBE0

Figure 6: Energy bands of blue-P VB calculated with different density functionals in 'a3p' basis.

Figure 8: Dependence on basis set for B3LYP functional and cluster of 54 P atoms.

Figure 7: Energy bands of blue-P VB parameterized on high-symmetry H-passivated clusters of increasing size (number of P atoms).

Figure 9: Dependence on coarse-graining method: NBO-projection vs. default 'inU' method.

§5. Honeycomb lattice with inversion

Figure 10: Symmetry unique TB elements of the simplest TB model on honeycomb lattice with inversion. See also Fig. 32.

Figure 11: Energy bands for honeycomb lattice with $t_{1,2,3}=-4,-3,-2$.

Figure 12: Lower energy band of the honeycomb lattice with $t_{1,2,3}=$ $1,1.5,1.7$.

The honeycomb lattice with inversion has two symmetry-equivalent sites and three different nearest neighbor couplings, Fig. 10. Let $\varepsilon_{0}=0$, then the elements of TB Hamiltonian are as follows

$$
\begin{equation*}
H_{11}=H_{22}=0, \quad H_{12}=t_{3}+t_{2} \mathrm{e}^{\mathrm{i} k_{1}}+t_{1} \mathrm{e}^{-\mathrm{i} k_{2}} \tag{5.1}
\end{equation*}
$$

There are two bands:

$$
\begin{equation*}
E_{1,2}=\mp \sqrt{t_{1}^{2}+t_{2}^{2}+t_{3}^{2}+2 t_{2} t_{3} \cos k_{1}+2 t_{3} t_{1} \cos k_{2}+2 t_{1} t_{2} \cos k_{3}}, \quad k_{3}=-k_{1}-k_{2} \tag{5.2}
\end{equation*}
$$

The band structure is shown in Fig. 11, see also DOS on Fig. 23. The lower band, see Fig. 12, has at least four extrema per unit cell at points corresponding to $k_{i}=\pi n_{i}, n_{i} \in \mathbb{Z}$ and $E^{2}=\left(\pm t_{1} \pm t_{2} \pm t_{3}\right)^{2}$ with 8 different sign combinations corresponding to 4 k -points per unit cell. If $\left|t_{1,2,3}\right|$ satisfy triangle inequality then and only then there is a fifth extremum, which is the maximum at $E=0$ with k_{i} being angles or supplementary angles of the triangle with sides $\left|t_{1,2,3}\right|$, i.e. $2 t_{2} t_{3} \cos k_{1}=t_{1}^{2}-t_{2}^{2}-t_{3}^{2}$ and so fourth. In this case the two bands are interconnected at $E=0$ via two Dirac cones per unit cell, otherwise the two bands are disconnected. Without the loss of generality, let $0 \leqslant t_{1} \leqslant t_{2} \leqslant t_{3}$, then the band edges are located at $E= \pm\left(t_{1}+t_{2}+t_{3}\right)$ and if $t_{1}+t_{2}<t_{3}$ then there is the band gap between $E= \pm\left(t_{1}+t_{2}-t_{3}\right)$, otherwise $t_{1}+t_{2}-t_{3}$ is the height of the Dirac cone relative to the nearest saddle point, which is the largest for the graphene lattice, i.e. when $t_{1}=t_{2}=t_{3}$.

For same-sign $t_{1,2,3}$ the band outer edges are at Γ-point, and mean effective masses are as follows:

$$
\begin{equation*}
\frac{1}{m_{1}}+\frac{1}{m_{2}}=\frac{a^{2} t_{2} t_{3}+b^{2} t_{3} t_{1}+|\boldsymbol{a}+\boldsymbol{b}|^{2} t_{1} t_{2}}{t_{1}+t_{2}+t_{3}}, \quad \frac{1}{m_{1} m_{2}}=\frac{|\boldsymbol{a} \times \boldsymbol{b}|^{2} t_{1} t_{2} t_{3}}{t_{1}+t_{2}+t_{3}} \tag{5.3}
\end{equation*}
$$

Mean hopping amplitudes are given by

$$
\begin{equation*}
\eta_{1}^{2}+\eta_{2}^{2}=\frac{1}{2} \frac{a^{2} t_{2}^{2} t_{3}^{2}+b^{2} t_{3}^{2} t_{1}^{2}+|\boldsymbol{a}+\boldsymbol{b}|^{2} t_{1}^{2} t_{2}^{2}}{t_{1}^{2}+t_{2}^{2}+t_{3}^{2}}, \quad \eta_{1} \eta_{2}=\frac{1}{2} \frac{|\boldsymbol{a} \times \boldsymbol{b}| t_{1} t_{2} t_{3}}{\sqrt{t_{1}^{2}+t_{2}^{2}+t_{3}^{2}}} \tag{5.4}
\end{equation*}
$$

If site position is close to $(3 / 4,1 / 4)$, the honeycomb lattice looks like a brickwork with bricks of the length close to $|\boldsymbol{a}-\boldsymbol{b}| / 2$ and the height close to $|\boldsymbol{a}+\boldsymbol{b}| / 2$, see Fig. 27.

§6. Triangular lattice with inversion

Figure 13: Symmetry unique TB elements of the simplest TB model on triangular lattice with inversion.

Figure 14: Energy bands for triangular lattice with $t_{1,2,3}=-4,-3,-2$.

Figure 15: Lower energy band of the triangular lattice with $t_{1,2,3}=$ $1,1.5,1.7$.

The triangular lattice with inversion has one site per unit cell and three different nearest neighbor couplings, Fig. 13, which are assumed to be ordered as follows: $\left|t_{1}\right|>\left|t_{2}\right|>\left|t_{3}\right|$. Let $\varepsilon_{0}=0$, then the TB Hamiltonian is one-dimensional and its eigenenergy is given by

$$
\begin{equation*}
E=2 t_{1} \cos k_{1}+2 t_{2} \cos k_{2}+2 t_{3} \cos k_{3}, \quad k_{3}=-k_{1}-k_{2} \tag{6.1}
\end{equation*}
$$

The band structure is shown in Fig. 14, see also DOS on Fig. 24. The lower band, see Fig. 15, has at least four extrema per unit cell at points corresponding to $k_{i}=\pi n_{i}, n_{i} \in \mathbb{Z}$ and $E=2\left(\pm t_{1} \pm t_{2} \pm t_{3}\right)$ with even number of 'minus' signs corresponding to four k-points per unit cell. If $\left|t_{1,2,3}^{-1}\right|$ satisfy triangle inequality then and only then there is a fifth extremum with k_{i} satisfying the equations $t_{1} \sin k_{1}=t_{2} \sin k_{2}=t_{3} \sin k_{3}$. In this case $k_{i}=\alpha_{i}+\pi \mathcal{I}\left\{t_{1} t_{2} t_{3} / t_{i}>0\right\}$, where $\alpha_{1,2,3}$ are angles of the triangle with sides $\left|t_{1,2,3}^{-1}\right|$. The energy of this extremum is given by $-t_{1} t_{2} / t_{3}-t_{2} t_{3} / t_{1}-t_{3} t_{1} / t_{2}$ and is close to $-2 \operatorname{sgn}\left(t_{1} t_{2} t_{3}\right)\left(\left|t_{1}\right|+\left|t_{2}\right|-\left|t_{3}\right|\right)$. The opposite extremun is at a high-symmetry point and has energy $2 \operatorname{sgn}\left(t_{1} t_{2} t_{3}\right)\left(\left|t_{1}\right|+\left|t_{2}\right|+\left|t_{3}\right|\right)$. Thus the band span is at least $4\left(\left|t_{1}\right|+\left|t_{2}\right|\right)$.

Mean effective masses at Γ-point are as follows:

$$
\begin{equation*}
\frac{1}{m_{1}}+\frac{1}{m_{2}}=2 a^{2} t_{1}+2 b^{2} t_{2}+2|\boldsymbol{a}+\boldsymbol{b}|^{2} t_{3}, \quad \frac{1}{m_{1} m_{2}}=4|\boldsymbol{a} \times \boldsymbol{b}|^{2}\left(t_{1} t_{2}+t_{2} t_{3}+t_{3} t_{1}\right) \tag{6.2}
\end{equation*}
$$

Mean hopping amplitudes are given by

$$
\begin{equation*}
\eta_{1}^{2}+\eta_{2}^{2}=a^{2} t_{1}^{2}+b^{2} t_{2}^{2}+|\boldsymbol{a}+\boldsymbol{b}|^{2} t_{3}^{2}, \quad \eta_{1} \eta_{2}=|\boldsymbol{a} \times \boldsymbol{b}|^{2}\left(t_{1}^{2} t_{2}^{2}+t_{2}^{2} t_{3}^{2}+t_{3}^{2} t_{1}^{2}\right) \tag{6.3}
\end{equation*}
$$

§7. Diamond σ-valence band

Figure 16: Symmetry unique TB elements of diamond σ-VB. See also Fig. 33.

Figure 17: Energy bands of Si-diamond σ VB: comparison of three models parameterized by high-symmetry points (4-,6-,8-par) and a 9parameter model where all TB elements higher than 10 meV are copied from the exact TB Hamiltonian (9'-par).

The symmetry unique TB elements are shown in Fig. 16. There are 9 high-symmetry energy reference values at 4 k-points: $\Gamma, \mathrm{X}, \mathrm{W}$ and L . The minimal model free of accidental degeneracy includes 4 parameters: $e_{0}, t_{1}, t_{2 b}, t_{3 d}$, and this model produces qualitatively correct bands as shown in Fig. 17. Addition of more parameters fitted at high-symmetry points improves the accuracy near those points, but no systematic improvement of accuracy of X-R k-path is observed, see Fig. 17.

The effective mass at the nondegenerate Γ-point state is given by

$$
\begin{equation*}
\frac{1}{m a^{2}}=-\frac{t_{1}+4 t_{2 b}+9 t_{3 d}}{4} \tag{7.1}
\end{equation*}
$$

At the triply degenerate Γ-point state the three-dimensional Hamiltonian is given by the following symmetryunique elememts:

$$
\begin{equation*}
\frac{H_{11}}{a^{2}}=\frac{t_{1}-4 t_{2 b}+9 t_{3 d}}{4} k_{1}^{2}-t_{2 b}\left(k_{2}^{2}+k_{3}^{2}\right), \quad \frac{H_{12}}{a^{2}}=\frac{t_{1}-4 t_{2 b}+9 t_{3 d}}{4} k_{1} k_{2} \tag{7.2}
\end{equation*}
$$

where \boldsymbol{k} is Cartesian wave vector.

§8. K4 lattice or Laves graph

Figure 18: Symmetry unique TB elements of K4 lattice.

Figure 19: Energy bands of K4 lattice with $t_{1}=-1$.

Figure 20: Energy bands of K4 lattice with $t_{1}=-1, t_{2}=0, t_{3}=2 / 25$.

The K4 lattice has four symmetry-equivalent sites per primitive cell. In the nearest neighbor model with $\varepsilon_{0}=0$ and $t_{1}=t$, the Hamiltonian reads

$$
\begin{equation*}
H_{i i}=0, i=\overline{1,4}, \quad H_{1 i}=t, i=\overline{2,4}, \quad H_{42}=t \mathrm{e}^{-\mathrm{i} k_{1}}, \quad H_{23}=t \mathrm{e}^{-\mathrm{i} k_{2}}, \quad H_{34}=t \mathrm{e}^{-\mathrm{i} k_{3}} . \tag{8.1}
\end{equation*}
$$

The eigenvalues satisfy the equation

$$
\begin{equation*}
(E-3 t)(E+t)^{3}+(E+t) t^{3} \sum_{i=1}^{4} \kappa_{i}^{2}=t^{4} \prod_{i=1}^{4} \kappa_{i}, \quad \kappa_{i}=2 \sin \frac{k_{i}}{2}, \quad k_{4}=-k_{1}-k_{2}-k_{3} . \tag{8.2}
\end{equation*}
$$

At Γ-point there is one simple eigenvalue and three degenerates solutions including Dirac cone and non-quadratic branch:

$$
\begin{equation*}
E_{0}=3 t, E_{ \pm}=-t \pm \frac{t k}{2}, E_{1}=-t+\frac{t k_{1} k_{2} k_{3} k_{4}}{k^{2}}, \quad k^{2}=\sum_{i=1}^{4} k_{i}^{2} \equiv \sum_{i \leqslant j=1}^{3} k_{i} k_{j} . \tag{8.3}
\end{equation*}
$$

Note that k^{2} is positive-definite quadratic form. See the band structure in Fig. 19.
The minimal model free of accidental degeneracy and electron-hole symmetry includes 4 parameters: $e_{0}, t_{1}, t_{2}, t_{3}$. The effective mass at the nondegenerate Γ - and H-point states are given by

$$
\begin{equation*}
\frac{1}{m a^{2}}=-\frac{t_{1}+6 t_{2}+10 t_{3}}{8} \text { and } \frac{1}{m a^{2}}=\frac{t_{1}-6 t_{2}+10 t_{3}}{8} \text { respectively. } \tag{8.4}
\end{equation*}
$$

§9. Orthorhombic lattice with K4 topology

Figure 21: Symmetry unique TB elements of the simplest TB model on K4o lattice. Note that primitive cell is shown here, whereas a, b, c parameters in the text corresponds to the Bravais cell.

Figure 22: Energy bands for K4o lattice with $t_{1,2,3}=$ $-4,-3,-2$.

The symmetry of the orthorhombic lattice with K4 topology (K4o lattice) is reduced to $\mathrm{I} 2_{1} 2_{1} 2_{1}$ compared to $\mathrm{I}_{1} 32$ for perfect K4. It has three different nearest neighbor couplings, Fig. 21. The triple degeneracy of the fully symmetric K4 model is completely removed in a generic K4o lattice, Fig. 22. Energy levels at Γ - and H -points ($\mathrm{H}=\mathrm{X}=\mathrm{Y}=\mathrm{Z}$) are equal to $\pm t_{1} \pm t_{2} \pm t_{3}$ with even and odd number of 'minus' signs, respectively. One of the two band extrema (minimum or maximum) is at the Γ-point and the opposite extremum is at the H -point $(\mathrm{H}=\mathrm{X}=\mathrm{Y}=\mathrm{Z})$. Consequently, the entire band spans from $-\left|t_{1}\right|-\left|t_{2}\right|-\left|t_{3}\right|$ to $\left|t_{1}\right|+\left|t_{2}\right|+\left|t_{3}\right|$. There are two Dirac cones at P-point with $E= \pm \sqrt{t_{1}^{2}+t_{2}^{2}+t_{3}^{2}}$. The DOS has four bands: two near band extrema and another two in level crowding regions corresponding to triply degenerate points of the ideal K4 lattice, see Figs. 25 and 26.

The effective masses at the band extrema are

$$
\begin{equation*}
\frac{1}{m_{1}}= \pm \frac{a^{2}}{4} \frac{\left|t_{1} t_{3}\right|}{\left|t_{1}\right|+\left|t_{3}\right|}, \quad \frac{1}{m_{2}}= \pm \frac{b^{2}}{4} \frac{\left|t_{2} t_{1}\right|}{\left|t_{2}\right|+\left|t_{1}\right|}, \quad \frac{1}{m_{3}}= \pm \frac{c^{2}}{4} \frac{\left|t_{3} t_{2}\right|}{\left|t_{3}\right|+\left|t_{2}\right|} \tag{9.1}
\end{equation*}
$$

The hopping amplitudes are

$$
\begin{equation*}
\eta_{1}^{2}=\frac{a^{2}}{8} \frac{t_{1}^{2} t_{3}^{2}}{t_{1}^{2}+t_{3}^{2}}, \quad \eta_{2}^{2}=\frac{b^{2}}{8} \frac{t_{2}^{2} t_{1}^{2}}{t_{2}^{2}+t_{1}^{2}}, \quad \eta_{3}^{2}=\frac{c^{2}}{8} \frac{t_{3}^{2} t_{2}^{2}}{t_{3}^{2}+t_{2}^{2}} \tag{9.2}
\end{equation*}
$$

If site position in the Bravais cell is close to $(1 / 4,0,0)$, the K4o lattice looks like a wiremesh in $a b$-plane with links of the length close to $\sqrt{a^{2}+b^{2}} / 2$ separated vertically by $c / 4$ on average, see Fig. 28.

Appendix

§A. Nonorthogonal basis set

A tight-binding Hamiltonian with an orthogonal basis needs substantial re-parameterization upon changing the geometry as compared to the basis of atomic-like orbitals (see [1] and recent discussions in [2]). This concerns in particular defects and boundaries. However, modern semiempirical programs such as MOPAC assume orthogonal basis and give accurate geometries for the wide range of molecules and crystals even being parameterized universally.

The most commonly used is the symmetric (Lowdin) orthogonalization: if S is the overlap matrix then $H^{\prime}=S^{-1 / 2} H S^{-1 / 2}$ is the orthogonalized Hamiltonian. To understand the influence of nonorthogonal basis set, let consider a semi-infinite linear chain with the following nonzero matrix elements:

$$
H_{n n}=\varepsilon, H_{n, n+1}=H_{n+1, n}=-t, \quad S_{n n}=1, S_{n, n+1}=S_{n+1, n}=s, \quad n \in \mathbb{N} .
$$

Then

$$
H_{n m}^{\prime}=\varepsilon \delta_{n m}+\frac{t+s \varepsilon}{s}\left[\frac{1+q^{2}}{1-q^{2}}\left(q^{|n-m|}-q^{n+m}\right)-\delta_{n m}\right], \quad q=-\frac{2 s}{1+\sqrt{1-4 s^{2}}} .
$$

The intersite matrix elements of this Hamiltonian decrease with distance exponentially as $q^{|n-m|}$. The diagonal and nearest neighbor elements are renormalized as follows:

$$
H_{n n}^{\prime}=\varepsilon+t^{\prime}\left(2 s+q^{2 n-1}\right), \quad H_{n, n+1}^{\prime}=-t^{\prime}\left(1-q^{2 n}\right), \quad t^{\prime}=(t+s \varepsilon)\left|\frac{q}{s}\right| \frac{1+q^{2}}{1-q^{2}} .
$$

In particular, the edge site $(n=1)$ has additional shift relative to sites in the bulk.

§B. Participation ratio

For a given normalized wave-function ψ the participation ratio, defined by

$$
p=\left(\sum_{n}\left|\psi_{n}\right|^{4}\right)^{-1}
$$

is the measure of the localization length of ψ. For example, if $\psi_{n}=1 / \sqrt{L}, n=\overline{1, L}$, then $p=L$. If

$$
\psi_{n}=\sqrt{\frac{1-q^{2}}{1+q^{2}}} q^{|n|}, n \in \mathbb{Z}, \text { then } p=\frac{\left(1+q^{2}\right)^{4}}{1-q^{8}} \approx 2 R \text { for } R=\frac{1}{\ln \left|q^{-1}\right|} \gg 1 \text {. }
$$

§C. Additional figures and tables

Figure 23: DOS for honeycomb lattice with $t_{1,2,3}=$ $-4,-3,-2$.

Figure 25: DOS for K4 lattice with $t_{1}=-1, t_{2}=$ $0, t_{3}=2 / 25$.

Figure 24: DOS for triangular lattice with $t_{1,2,3}=$ $-4,-3,-2$.

Figure 26: DOS for K4o lattice with $t_{1,2,3}=$ $-4,-3,-2$.

Figure 27: Honeycomb lattice in brickwork settings.

Figure 29: Symmetry unique TB elements of graphene π-system.

Figure 30: Symmetry unique TB elements of graphene σ-system.

Figure 31: Symmetry unique TB elements of graphene atom and bonds.

Figure 32: Symmetry unique TB elements of the simplest TB model on honeycomb lattice with inversion.

Figure 33: Symmetry unique TB elements of diamond σ-VB.

References

[1] A Zhugayevych, Fundamental models of quantum chemistry
[2] D Kienle, J I Cerda, A W Ghosh, Extended Huckel theory for band structure, chemistry, and transport. I. Carbon nanotubes, J Appl Phys 100, 043714 (2006)

