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§1. Abbreviations and notations

a3p Ahlrichs triple-ζ basis Def2-TZVP
AO Atomic Orbital
CB Conduction Band
DFT Density Functional Theory
HOMO Highest Occupied Molecular Orbital
LMO Localized Molecular Orbital
LP Lone Pair
LUMO Lowest Unoccupied Molecular Orbital
MO Molecular Orbital

NAO Natural Atomic Orbital
NBO Natural Bonding Orbital
NO Natural Orbital
NTO Natural Transition Orbital
PAW Projector Augmented Wave
p2p Pople double-ζ polarized basis 6-31G*
SCF Self-Consistent Field
TB Tight Binding
VB Valence Band

The inverse mass tensor reported here should be divided by ℏ2/me ≈ 7.6200 eVÅ2 to obtain dimensionless
masses.
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§2. Graphene π-system

Figure 1: Symmetry unique TB elements of
graphene π-system. See also Fig. 29.

Figure 2: Energy bands of graphene π-system for a
series of models of increasing accuracy.

The symmetry unique TB elements are shown in Fig. 1. Because there are 5 high-symmetry energy reference
values at 3 k-points: Γ, K and M, the largest ‘fittable’ model includes the onsite energy ε0 and 4 transfer
integrals including 3 directly interacting pairs: t1, t2, t3. The 4th integral should be t4 to balance the accuracy
of diagonal and off-diagonal Hamiltonian matrix elements containing even and odd (by chemical distance)
transfer integrals respectively. The resulting Hamiltonian is given by

H11 = H22 = ε0 + 2t2 (cos k1 + cos k2 + cos k3) + 2t4 (cos(k1 − k2) + cos(k2 − k3) + cos(k3 − k1)) ,

H12 = t1

(
1 + eik1 + e−ik2

)
+ t3

(
ei(k1−k2) + eik3 + e−ik3

)
(2.1)

where k3 = −k1 − k2. Therefore E1,2 = H11 ∓ |H12|. In high-symmetry direction k1 = k2 = k:

H11 = ε0 + 2t2 (2 cos k + cos 2k) + 2t4 (1 + 2 cos 3k) , H12 = t1 (1 + 2 cos k) + t3 (1 + 2 cos 2k) . (2.2)

In high-symmetry direction k1 = k, k2 = 0:

H11 = ε0 + 2t2 (1 + 2 cos k) + 2t4 (2 cos k + cos 2k) , H12 = t1

(
2 + eik

)
+ t3

(
2eik + e−ik

)
. (2.3)

In high-symmetry points (k = {0, π, 2π/3}):

E(1/3, 1/3) = ε0 − 3t2 + 6t4, E1,2(0, 0) = ε0 + 6t2 + 6t4 ∓ (3t1 + 3t3),

E1,2(1/2, 0) = E1,2(1/2, 1/2) = ε0 − 2t2 − 2t4 ∓ (t1 − 3t3). (2.4)

In particular, if we fit parameters at these high-symmetry points to PBE/p2p calculations, we obtain (in eV):

ε0 = −3.87, t1 = −2.87, t2 = 0.21, t3 = −0.27, t4 = 0.06,

giving band structure visually coinciding with the exact one. Although t4 is small, neglecting it results in large
error at M-point. The minimal model (t1 only) is still qualitatively accurate. Exact TB integrals fade with
distance quickly:

ε0 = −3.778, t1 = −2.887, t2 = 0.218, t3 = −0.239, t4 = 0.046, t5c = −0.029, t4b = −0.015,

t3b = 0.004, t5b = 0.004, t6 = 0.003, t6b = −0.002, t5 = 0.001, . . .
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§3. Graphene σ-valence band

Figure 3: Symmetry unique TB elements of graphene
σ-VB. See also Fig. 30.

Figure 4: Energy bands of graphene σ-VB for a
series of models of increasing accuracy.

The symmetry unique TB elements are shown in Fig. 3. There are 7 high-symmetry energy reference values
at 3 k-points: Γ, K and M. At our best, we use 5-parameter model including 5 independent transfer integrals:
t1, t2, t2b, t3 and t4d. Other nonzero integrals include t3b = −t3/2, t3c = t3/2, t4c = t3/2, t4 = −t3/3, t5 = t3/9,
t6 = −t3/27. This model fits high-symmetry points with 10 meV accuracy. With up to third-order terms, the
Hamiltonian is given by

H11(k1, k2, k3) = ε0 + 2t2 (cos k1 + cos k2) + 2t3c cos k3,

H12 = t1

(
1 + eik2

)
+ t2b

(
e−ik1 + e−ik3

)
+ t3

(
e−ik2 + ei2k2

)
+ t3b

(
eik1 + eik3 + ei(k2−k1) + ei(k2−k3)

)
,

H22(k1, k2, k3) = H11(k2, k3, k1), H33(k1, k2, k3) = H11(k3, k1, k2),

H23(k1, k2, k3) = H12(k2, k3, k1), H31(k1, k2, k3) = H12(k3, k1, k2), (3.1)

where k3 = −k1 − k2. In high-symmetry points:

E1,2(1/3, 1/3) = ε0 + t1 − 2t2 − 2t2b − 2t3 + 2t3b − t3c, (3.2)

E3(1/3, 1/3) = ε0 − 2t1 − 2t2 + 4t2b + 4t3 − 4t3b − t3c, (3.3)

E1(0, 0) = ε0 + 4t1 + 4t2 + 4t2b + 4t3 + 8t3b + 2t3c, (3.4)

E2,3(0, 0) = ε0 − 2t1 + 4t2 − 2t2b − 2t3 − 4t3b + 2t3c, (3.5)

E1(1/2, 0) = ε0 + 2t1 − 2t2b + 2t3 − 4t3b − 2t3c, (3.6)

E2(1/2, 0) = ε0 − 4t2 + 2t3c, (3.7)

E3(1/2, 0) = ε0 − 2t1 + 2t2b − 2t3 + 4t3b − 2t3c. (3.8)

In particular, if we fit 5-parameter model to PBE/p2p calculations, we obtain (in eV):

ε0 = −14.97, t1 = −2.19, t2 = 0.55, t2b = −0.52, t3 = −0.14, t4d = 0.03,

giving band structure visually coinciding with the exact one. If we neglect 4-order integrals we come to
reasonably accurate 3-parameter model: t1, t2, t3 with t2b = −t2, t3b = −t3/2 and t3c = t3/2. The minimal is
the 2-parameter model: t1 and t2 with t2b = −t2. Exact TB integrals fade with distance quickly:

ε0 = −14.965, t1 = −2.162, t2 = 0.555, t2b = −0.522, t3 = −0.157, t3b = 0.072, t3c = −0.082, t4 = 0.049,

t4c = −0.049, t4d = 0.024, t5c = −0.020, t4b = −0.010, t6 = 0.008, t5b = 0.005, t6b = −0.002, . . .
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§4. Blue phosphorene valence band

Figure 5: Symmetry unique TB elements of graphene atoms + bonds system. Here atom-atom elements are
labeled with ‘A’ and colored in green, bond-bond elements are labeled with ‘B’ and colored in red, and atom-
bond elements are colored in blue. Similar to other figures, the number in the labels shows chemical distance
whereas the small letter after it indicates radial series. This set is complete to dimer separation 6.75 bond
lengths and chemical distance 8. See also Fig. 31.

The valence band of ‘blue’ allotrope of phosphorene consists of σ-bonds and lone pairs, and thus its TB
Hamiltonian has the same symmetry as TB Hamiltonian of atoms and bonds in graphene lattice, in the sense
that the extra symmetry elements of p6/mmm layer group of graphene compared to p-3m1 group of phosphorene
are factorized out as irrelevant internal symmetries. The symmetry unique TB elements are shown in Fig. 5.

There are 12 high-symmetry energy reference values at 3 k-points: Γ, K and M. However, those of them
which intermix atoms and sites contain irreducible two-dimensional matrices.
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Figure 6: Energy bands of blue-P VB calculated with
different density functionals in ‘a3p’ basis.

Figure 7: Energy bands of blue-P VB parameterized
on high-symmetry H-passivated clusters of increasing
size (number of P atoms).

Figure 8: Dependence on basis set for B3LYP func-
tional and cluster of 54 P atoms.

Figure 9: Dependence on coarse-graining method:
NBO-projection vs. default ‘inU’ method.
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§5. Honeycomb lattice with inversion

Figure 10: Symmetry
unique TB elements of
the simplest TB model on
honeycomb lattice with
inversion. See also Fig. 32.

Figure 11: Energy bands for honeycomb
lattice with t1,2,3 = −4,−3,−2.

Figure 12: Lower energy band of
the honeycomb lattice with t1,2,3 =
1, 1.5, 1.7.

The honeycomb lattice with inversion has two symmetry-equivalent sites and three different nearest neighbor
couplings, Fig. 10. Let ε0 = 0, then the elements of TB Hamiltonian are as follows

H11 = H22 = 0, H12 = t3 + t2e
ik1 + t1e

−ik2 . (5.1)

There are two bands:

E1,2 = ∓
√
t21 + t22 + t23 + 2t2t3 cos k1 + 2t3t1 cos k2 + 2t1t2 cos k3, k3 = −k1 − k2. (5.2)

The band structure is shown in Fig. 11, see also DOS on Fig. 23. The lower band, see Fig. 12, has at least four
extrema per unit cell at points corresponding to ki = πni, ni ∈ Z and E2 = (±t1 ± t2 ± t3)

2 with 8 different
sign combinations corresponding to 4 k-points per unit cell. If |t1,2,3| satisfy triangle inequality then and only
then there is a fifth extremum, which is the maximum at E = 0 with ki being angles or supplementary angles
of the triangle with sides |t1,2,3|, i.e. 2t2t3 cos k1 = t21 − t22 − t23 and so fourth. In this case the two bands are
interconnected at E = 0 via two Dirac cones per unit cell, otherwise the two bands are disconnected. Without
the loss of generality, let 0 ⩽ t1 ⩽ t2 ⩽ t3, then the band edges are located at E = ±(t1 + t2 + t3) and if
t1 + t2 < t3 then there is the band gap between E = ±(t1 + t2 − t3), otherwise t1 + t2 − t3 is the height of
the Dirac cone relative to the nearest saddle point, which is the largest for the graphene lattice, i.e. when
t1 = t2 = t3.

For same-sign t1,2,3 the band outer edges are at Γ-point, and mean effective masses are as follows:

1

m1
+

1

m2
=
a2t2t3 + b2t3t1 + |a+ b|2t1t2

t1 + t2 + t3
,

1

m1m2
=

|a× b|2t1t2t3
t1 + t2 + t3

. (5.3)

Mean hopping amplitudes are given by

η21 + η22 =
1

2

a2t22t
2
3 + b2t23t

2
1 + |a+ b|2t21t22

t21 + t22 + t23
, η1η2 =

1

2

|a× b|t1t2t3√
t21 + t22 + t23

. (5.4)

If site position is close to (3/4, 1/4), the honeycomb lattice looks like a brickwork with bricks of the length
close to |a− b|/2 and the height close to |a+ b|/2, see Fig. 27.
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§6. Triangular lattice with inversion

Figure 13: Symmetry
unique TB elements of
the simplest TB model
on triangular lattice with
inversion.

Figure 14: Energy bands for triangular
lattice with t1,2,3 = −4,−3,−2.

Figure 15: Lower energy band of
the triangular lattice with t1,2,3 =
1, 1.5, 1.7.

The triangular lattice with inversion has one site per unit cell and three different nearest neighbor couplings,
Fig. 13, which are assumed to be ordered as follows: |t1| > |t2| > |t3|. Let ε0 = 0, then the TB Hamiltonian is
one-dimensional and its eigenenergy is given by

E = 2t1 cos k1 + 2t2 cos k2 + 2t3 cos k3, k3 = −k1 − k2. (6.1)

The band structure is shown in Fig. 14, see also DOS on Fig. 24. The lower band, see Fig. 15, has at least
four extrema per unit cell at points corresponding to ki = πni, ni ∈ Z and E = 2(±t1 ± t2 ± t3) with even
number of ‘minus’ signs corresponding to four k-points per unit cell. If |t−1

1,2,3| satisfy triangle inequality then
and only then there is a fifth extremum with ki satisfying the equations t1 sin k1 = t2 sin k2 = t3 sin k3. In this
case ki = αi + π I {t1t2t3/ti > 0}, where α1,2,3 are angles of the triangle with sides |t−1

1,2,3|. The energy of this
extremum is given by −t1t2/t3 − t2t3/t1 − t3t1/t2 and is close to −2 sgn (t1t2t3)(|t1|+ |t2| − |t3|). The opposite
extremun is at a high-symmetry point and has energy 2 sgn (t1t2t3)(|t1|+ |t2|+ |t3|). Thus the band span is at
least 4(|t1|+ |t2|).

Mean effective masses at Γ-point are as follows:

1

m1
+

1

m2
= 2a2t1 + 2b2t2 + 2|a+ b|2t3,

1

m1m2
= 4|a× b|2(t1t2 + t2t3 + t3t1). (6.2)

Mean hopping amplitudes are given by

η21 + η22 = a2t21 + b2t22 + |a+ b|2t23, η1η2 = |a× b|2
(
t21t

2
2 + t22t

2
3 + t23t

2
1

)
. (6.3)
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§7. Diamond σ-valence band

Figure 16: Symmetry unique TB elements of diamond
σ-VB. See also Fig. 33.

Figure 17: Energy bands of Si-diamond σ-
VB: comparison of three models parameterized
by high-symmetry points (4-,6-,8-par) and a 9-
parameter model where all TB elements higher
than 10 meV are copied from the exact TB Hamil-
tonian (9’-par).

The symmetry unique TB elements are shown in Fig. 16. There are 9 high-symmetry energy reference
values at 4 k-points: Γ, X, W and L. The minimal model free of accidental degeneracy includes 4 parameters:
e0, t1, t2b, t3d, and this model produces qualitatively correct bands as shown in Fig. 17. Addition of more param-
eters fitted at high-symmetry points improves the accuracy near those points, but no systematic improvement
of accuracy of X-R k-path is observed, see Fig. 17.

The effective mass at the nondegenerate Γ-point state is given by

1

ma2
= − t1 + 4t2b + 9t3d

4
. (7.1)

At the triply degenerate Γ-point state the three-dimensional Hamiltonian is given by the following symmetry-
unique elememts:

H11

a2
=
t1 − 4t2b + 9t3d

4
k21 − t2b

(
k22 + k23

)
,

H12

a2
=
t1 − 4t2b + 9t3d

4
k1k2, (7.2)

where k is Cartesian wave vector.
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§8. K4 lattice or Laves graph

Figure 18: Symmetry unique TB el-
ements of K4 lattice.

Figure 19: Energy bands of K4 lat-
tice with t1 = −1.

Figure 20: Energy bands of K4 lat-
tice with t1 = −1, t2 = 0, t3 = 2/25.

The K4 lattice has four symmetry-equivalent sites per primitive cell. In the nearest neighbor model with
ε0 = 0 and t1 = t, the Hamiltonian reads

Hii = 0, i = 1, 4, H1i = t, i = 2, 4, H42 = te−ik1 , H23 = te−ik2 , H34 = te−ik3 . (8.1)

The eigenvalues satisfy the equation

(E − 3t)(E + t)3 + (E + t)t3
4∑

i=1

κ2i = t4
4∏

i=1

κi, κi = 2 sin
ki
2
, k4 = −k1 − k2 − k3. (8.2)

At Γ-point there is one simple eigenvalue and three degenerates solutions including Dirac cone and non-quadratic
branch:

E0 = 3t, E± = −t± tk

2
, E1 = −t+ tk1k2k3k4

k2
, k2 =

4∑
i=1

k2i ≡
3∑

i⩽j=1

kikj . (8.3)

Note that k2 is positive-definite quadratic form. See the band structure in Fig. 19.
The minimal model free of accidental degeneracy and electron-hole symmetry includes 4 parameters:

e0, t1, t2, t3. The effective mass at the nondegenerate Γ- and H-point states are given by

1

ma2
= − t1 + 6t2 + 10t3

8
and

1

ma2
=
t1 − 6t2 + 10t3

8
respectively. (8.4)
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§9. Orthorhombic lattice with K4 topology

Figure 21: Symmetry unique TB elements of the sim-
plest TB model on K4o lattice. Note that primitive
cell is shown here, whereas a, b, c parameters in the
text corresponds to the Bravais cell.

Figure 22: Energy bands for K4o lattice with t1,2,3 =
−4,−3,−2.

The symmetry of the orthorhombic lattice with K4 topology (K4o lattice) is reduced to I212121 compared
to I4132 for perfect K4. It has three different nearest neighbor couplings, Fig. 21. The triple degeneracy of
the fully symmetric K4 model is completely removed in a generic K4o lattice, Fig. 22. Energy levels at Γ- and
H-points (H=X=Y=Z) are equal to ±t1 ± t2 ± t3 with even and odd number of ‘minus’ signs, respectively.
One of the two band extrema (minimum or maximum) is at the Γ-point and the opposite extremum is at the
H-point (H=X=Y=Z). Consequently, the entire band spans from −|t1| − |t2| − |t3| to |t1| + |t2| + |t3|. There
are two Dirac cones at P-point with E = ±

√
t21 + t22 + t23. The DOS has four bands: two near band extrema

and another two in level crowding regions corresponding to triply degenerate points of the ideal K4 lattice, see
Figs. 25 and 26.

The effective masses at the band extrema are

1

m1
= ±a

2

4

|t1t3|
|t1|+ |t3|

,
1

m2
= ±b

2

4

|t2t1|
|t2|+ |t1|

,
1

m3
= ±c

2

4

|t3t2|
|t3|+ |t2|

. (9.1)

The hopping amplitudes are

η21 =
a2

8

t21t
2
3

t21 + t23
, η22 =

b2

8

t22t
2
1

t22 + t21
, η23 =

c2

8

t23t
2
2

t23 + t22
. (9.2)

If site position in the Bravais cell is close to (1/4, 0, 0), the K4o lattice looks like a wiremesh in ab-plane
with links of the length close to

√
a2 + b2/2 separated vertically by c/4 on average, see Fig. 28.
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Appendix

§A. Nonorthogonal basis set

A tight-binding Hamiltonian with an orthogonal basis needs substantial re-parameterization upon changing
the geometry as compared to the basis of atomic-like orbitals (see [1] and recent discussions in [2]). This
concerns in particular defects and boundaries. However, modern semiempirical programs such as MOPAC
assume orthogonal basis and give accurate geometries for the wide range of molecules and crystals even being
parameterized universally.

The most commonly used is the symmetric (Lowdin) orthogonalization: if S is the overlap matrix then
H ′ = S−1/2HS−1/2 is the orthogonalized Hamiltonian. To understand the influence of nonorthogonal basis set,
let consider a semi-infinite linear chain with the following nonzero matrix elements:

Hnn = ε, Hn,n+1 = Hn+1,n = −t, Snn = 1, Sn,n+1 = Sn+1,n = s, n ∈ N.

Then

H ′
nm = εδnm +

t+ sε

s

[
1 + q2

1− q2

(
q|n−m| − qn+m

)
− δnm

]
, q = − 2s

1 +
√
1− 4s2

.

The intersite matrix elements of this Hamiltonian decrease with distance exponentially as q|n−m|. The diagonal
and nearest neighbor elements are renormalized as follows:

H ′
nn = ε+ t′(2s+ q2n−1), H ′

n,n+1 = −t′(1− q2n), t′ = (t+ sε)
∣∣∣q
s

∣∣∣ 1 + q2

1− q2
.

In particular, the edge site (n = 1) has additional shift relative to sites in the bulk.

§B. Participation ratio

For a given normalized wave-function ψ the participation ratio, defined by

p =

(∑
n

|ψn|4
)−1

,

is the measure of the localization length of ψ. For example, if ψn = 1/
√
L, n = 1, L, then p = L. If

ψn =

√
1− q2

1 + q2
q|n|, n ∈ Z, then p =

(
1 + q2

)4
1− q8

≈ 2R for R =
1

ln |q−1|
≫ 1.
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§C. Additional figures and tables

Figure 23: DOS for honeycomb lattice with t1,2,3 =
−4,−3,−2.

Figure 24: DOS for triangular lattice with t1,2,3 =
−4,−3,−2.

Figure 25: DOS for K4 lattice with t1 = −1, t2 =
0, t3 = 2/25.

Figure 26: DOS for K4o lattice with t1,2,3 =
−4,−3,−2.
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Figure 27: Honeycomb lattice in brickwork settings. Figure 28: K4o lattice in wiremesh settings.
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Figure 29: Symmetry unique TB elements of graphene π-system.
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Figure 30: Symmetry unique TB elements of graphene σ-system.
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Figure 31: Symmetry unique TB elements of graphene atom and bonds.
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Figure 32: Symmetry unique TB elements of the simplest TB model on honeycomb lattice with inversion.
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Figure 33: Symmetry unique TB elements of diamond σ-VB.
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