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Abstract
We develop and implement efficient algorithms for calculating lattice Green’s
functions (LGFs) at any point and argument. This includes several approaches:
recurrence relations in lattice coordinates, series at zero and infinity, and finite-
precision uniform approximations. The methodology can be applied to any
simple lattice, whereas program code is provided for triangular and hypercubic
lattices. In particular, the obtained generic recurrence relations are applicable
to any lattice with a root-free band dispersion. Except for lattices with a high
coordination number, these relations allow LGF to be presented as a linear com-
bination of d non-polynomial functions with polynomial coefficients, where d
is the lattice dimension. The non-polynomial functions are solutions of d-order
differential equation with polynomial coefficients which allows their series
expansion at singularities to be performed. For series at infinity, we estimate
the remainder, thus extending its use to the zero value of the argument. The
remainder itself provides a good finite-precision estimate for the LGF. Finally,
we derive a large-scale approximation that smoothly connects the lattice and
the continuum Green’s functions. The provided open-source code allows for
arbitrary-precision and symbolic computations of LGF.
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1. Introduction

Lattice Green’s function (LGF) is the resolvent of the lattice Laplacian. For simplicity, we
consider primitive lattices, so that all points are translationally equivalent and thus

gxy (s) =
[
(s−∆)

−1
]
xy
≡ gx−y (s) , (1)

where the coordinates x,y ∈ Zd enumerate lattice points, d is the lattice dimension, and the
argument s ∈ C. LGF is commonly utilized for solving quantum and statistical lattice mod-
els with a nearest-neighbor interaction [1–4]. In such applications, the mean-field solution is
given by a rescaled LGF, and correlation corrections involve the summation of the LGF over
the lattice, thus requiring an efficient algorithm for its evaluation. Formally, any LGF can be
calculated using the Fourier integral:

gx (s) =
1

(2π)d

ˆ
· · ·
ˆ π

−π

e−ikx

s− S(k)
dk, (2)

where kx=
∑d

i=1 ki xi in lattice coordinates,

S(k) =
∑
|z|=1

(coskz− 1) (3)

is the band dispersion, and |z| is the shortest-path distance (the smallest number of steps
between the origin and the lattice point z). However, this approach is impractical at singu-
lar points owing to the zero denominator and for large values of coordinates because of the
highly oscillating numerator requiring ultrafine integration grids [5]. Therefore, a number of
other approaches have been developed allowing for an arbitrary-precision evaluation of the
LGF for any argument. In particular, g0(0) for cubic lattices was reduced to known special
functions almost a century ago [6, 7]. Efficient algorithms for simple two-dimensional lattices
were developed in the 1970s [8–10]. Proof-of-principle results for three-dimensional lattices
were also obtained in that period [11, 12], but computationally efficient formulas in terms
of elliptic integrals were derived much later [13]. Multidimensional lattices are less studied,
although numerous identities are known [1], including series at zero for hypercubic lattice [14].
All these results suggest finding generic approaches for the efficient and easy-to-implement
evaluation of LGF, at least for simple lattices, which is the ultimate goal of the present work.

To summarize the current state of the art in LGF evaluation, we note that there are several
basic complementary approaches illustrated in figure 1. Universally applicable are Fourier
integrals and path expansion series. The latter can be defined as the perturbation expansion of
the resolvent in off-diagonal elements such that for a lattice of identical sites

gx (s) =
∞∑
n=0

Nx (n)

(s+w)n+1+|x| , (4)

where Nx(n) are some coefficients implicitly dependent on the free parameter w which can
be conveniently chosen to simplify the coefficients N. If w is the lattice coordination number,
then Nx(n) is the number of paths of the length n+ |x|. For simple lattices, explicit formulas
for N are available and can be efficiently evaluated recursively in d [15]. Missing is a series
remainder: because all terms in equation (4) are positive, by estimating the remainder we can
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Figure 1. Schematic overview of LGF evaluation methods showing the range of their
applicability. On this and other figures the argument in gx(s) is positive. The ‘coordinate’
here means either components of x or its norm such as |x| or ∥x∥. The scale of both axes
is unit.

obtain upper and lower boundaries for the LGF, make equation (4) usable even for s= 0, and
provide uniform approximation for the LGF. Another common approach relies on the existence
of one-dimensional recurrence relations in coordinates allowing to present the LGF at any point
as a linear combination of the LGF at a seeding set of points, which we call the LGF basis.
Such relations do exist for all simple two- and three-dimensional lattices. The basis functions
must be evaluated by other methods. For large s it can be performed by the path expansion
series, whereas small s requires series expansion at zero. The latter can usually be obtained
from a linear differential equation for g0 which is known for many lattices [1]. Therefore, it is
reasonable to expect the existence of generic recurrence relations and differential equations for
LGF for any simple lattice. All the approaches discussed thus far are inefficient in the large-
scale region (small s and large x). Here the Green’s function of the Laplacian in Rd can be
used as a zero-order approximation, but corrections are needed to smoothly connect it to the
LGF. The aim of the present work is to provide all the aforementioned missing formulas and
implement all the discussed above approaches in an efficient program code for triangular and
hypercubic lattices representing two archetypal classes of simple lattices.

The manuscript is organized as follows, with the approaches presented in the order from
universal to lattice-specific. First, we derive the large-scale approximation. We then obtain the
path expansion series remainders. Next, we derive generic recurrence relations in the coordin-
ates and differential equations for LGF. Finally, we briefly outline the construction of the series
expansion at zero. All the generic methods are illustrated for hypercubic and triangular lattices.
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Complete derivations, technical details, implementation, code and its documentation are pub-
lished on the project webpage at https://cmsos.github.io/lgf/.

2. Large-scale approximation

At large scales, the Green’s function of any regular lattice tends to the resolvent of Laplacian
in Rd which is

g(s,x) =
1

(2π)d/2

(√
s

∥x∥

) d
2−1

K d
2−1

(√
s∥x∥

)
, (5)

where K is the modified Bessel function of the second kind and ∥x∥ is the Euclidean distance
for the lattice embedded in Rd with the unit bond (edge) length. The inverse Laplace trans-
formation of this function is the propagator of the diffusion equation:

g̃(t,x) =
1
2πi

ˆ +i∞

−i∞
g(s,x)est ds=

1

(4π t)d/2
exp

(
−∥x∥2

4t

)
. (6)

To approximate LGF by equation (6), the latter must be properly rescaled as

g̃lat (t,x) =
V1

(4πDt)d/2
exp

(
−∥x∥2

4Dt

)
, (7)

where V1 is the volume per lattice point, D= w0/(2d) is the diffusion constant and w0 is the
lattice coordination number. For the hypercubic lattice, both V1 and D are unit, whereas for
the triangular lattice V1 =

√
3/2 and D= 3/2.

A more accurate description can be obtained using large-scale approximation. We derive
it for propagators and then perform a Laplace transformation of the result. The propagator of
equation (2) is

g̃x (t) =
1

(2π)d

ˆ
· · ·
ˆ π

−π

etS(k)−ikx dk. (8)

At large t and x, this integral can be calculated using the saddle-point method. The saddle point
of the exponent is at k=−iκ, where κ≡ κ(t) is a solution to the equations

∂S̃
∂κi

=
xi
t
, i = 1, . . . ,d, where S̃(κ) = S(−iκ) . (9)

When the integration path in equation (8) is shifted by−iκ, the integrand has a sharpmaximum
at zero and reduced oscillations on the path, such that the integral can be approximated by the
Gaussian integral:

g̃x (t) =
1

(2π)d

ˆ
· · ·
ˆ π

−π

etS(k−iκ)−κx−ikx dk≈ etS̃(κ)−κx√
det2π tS̃ ′ ′ (κ)

, (10)

where S̃ ′ ′ is Hessian. If t→∞, κ→ 0 and S̃(κ)∼ κ2 yielding κ∼ x/t thus recovering the
continuum Green’s function (7).

4
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Figure 2. Large-scale approximation (red curve versus exact-LGF black curve) for
simple cubic lattice is accurate even for small values of coordinates, x= (1,2,3). The
argument q is defined by equation (14).

The Laplace transformation of equation (10) can be performed only approximately by the
quadratic expansion of the exponent at the integrand’s maximum (a variant of the saddle-point
method) yielding:

gx (s)≈
√

2π

− ˙̃S

e−κx√
det2π tS̃ ′ ′

(11)

with the equation S̃(κ(t)) = s for t, where the dot indicates the time derivative, the argument
of S̃ is omitted for clarity, and

− ˙̃S≡− κ̇x
t
≡ t

d∑
i,j=1

S̃ ′ ′
ij κ̇iκ̇j, so that κ̇=−

(
S̃ ′ ′)−1

x

t2
. (12)

For small s

t=
∥x∥
2
√
s
=⇒ gx (s)≈

1
2
√
s

( √
s

2π∥x∥

) d−1
2

e−∥x∥
√
s. (13)

Owing to the additional approximations made during the Laplace transformation, only
the leading term of the continuum Green’s function (5) is reproduced as ∥x∥

√
s→∞.

Nevertheless, numerical tests show that the large-scale approximation is accurate even for
small x, as illustrated in figure 2.
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3. Series remainder

To estimate the series remainder in equation (4), it is convenient to introduce the variable q
and the function

hx (q) = gx (s(q)) , q=
w

s+w
, s= w

1− q
q

. (14)

Under the proper choice of w, the path expansion coefficients are positive, and the function
hx(q) is analytic for |q|< 1 and has a singularity at q= 1. In what follows, we assume that
w satisfies the above conditions. For example, w= 2d for the hypercubic lattice and 8 for the
triangular one. Now, series (4) can be written as

hx (q) =
∞∑
n=0

cx;nq
n+1+|x|, cx;n =

Nx (n)

wn+1+|x| , (15)

and the remainder is defined as

Rx;n (q) =
∞∑
k=n

cx;kq
k+1+|x|. (16)

To estimate R, we approximate the path expansion coefficients cx;n and then sum up the result.
From the Fourier integral (2) it follows that

cx;n =
1

w(2π)d

ˆ
· · ·
ˆ π

−π

(
1+

S(k)
w

)n+|x|

e−ikx dk. (17)

For a large n and small S, the power function in the integrand can be approximated by the
exponent (1+ S/w)n

′ ≈ etS, where t= (n ′ + ε)/w and ε is a fitting parameter such that ε= 0
corresponds to the upper boundary. If w>−mink S(k) then the maximum of S(k) makes a
dominant contribution to the Fourier integral. However, for some lattices such as hypercubic,
the convenient choice of w might include k-points with w=−mink S(k), so their contribu-
tions should also be taken into account. In all cases, the path expansion coefficients can be
approximated by the propagator as follows:

cx;n ≈
σn
w
g̃x

(
n+ ε+ |x|

w

)
, (18)

where σn accounts for the symmetry. For example, for bipartite lattices, if w is half-bandwidth,
then σ2n = 2 and σ2n+1 = 0. Numerical tests show that this approximation is accurate over a
broad range of n including the maximum of cx;n, as demonstrated in figure 3.

The estimate (18) gives too complicated series even if the continuum propagator (7) is used.
A possible workaround is to approximate the latter by a ‘summable’ function:

g̃lat (t,x) =
V1

(4πDt)d/2
exp

(
−∥x∥2

4Dt

)
≲ V1

( w
4πD

)d/2(
wt+

w
2dD

∥x∥2
)−d/2

(19)

resulting in

cx;n ≈
σnV1

w

( w
4πD

)d/2(
n+ ε+ |x|+ w

2dD
∥x∥2

)−d/2
, (20)
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Figure 3. Two approximations of path expansion coefficients cx;n for triangular lattice
at x= (2,3).

which is still accurate if

n+ |x| ≫ w
2dD

∥x∥2, (21)

and provides the upper boundary otherwise, see figure 3. Now equation (16) can be summed
up explicitly, resulting in

Rx;n (q)≈ RΦ
x;n (q,ε) (22)

where ε is a parameter and the functional form of RΦ depends on σn:

RΦ
x;n (q,ε) =

V1

w

( w
4πD

)d/2
qn+1+|x| Φ

(
q,
d
2
,n+ ε+ |x|+ w

2dD
∥x∥2

)
(23)

for σn = 1 and

RΦ
x;2n (q,ε) =

2V1

w

( w
8πD

)d/2
q2n+1+|x| Φ

(
q2,

d
2
,n+

1
2

(
ε+ |x|+ w

2dD
∥x∥2

))
(24)

for σ2n = 2, σ2n+1 = 0, where Φ(q,p,α) =
∑∞

n=0(n+α)−pqn is the Lerch transcendent func-
tion. The best estimate is expected for the value of ε corresponding to the large-n asymptotics
of the path expansion coefficients, which we denote as ε∞ (1/2 for the hypercubic lattice and
1/3 for the triangular one). Then a strict upper boundary can be obtained with some εup ⩽ ε∞.
Numerical tests for the path expansion coefficients show that εup = ε∞ for the triangular lat-
tice, whereas for the hypercubic lattice, εup = 1/4 for d⩽ 6. A tight lower boundary in the
functional form of equation (20) is meaningful only for small x with some εlow > ε∞, see
figure 4. In a general case, the lower boundary is zero.
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Figure 4. Error in evaluation of LGF for the simple cubic lattice at (a) origin and (b)
point (1,1,1) by path expansion with different ϵup,low − ϵ∞ (shown in parentheses) in
the remainder (24).

Figure 5. Lerch transcendent approximation to Green’s function of several lattices at
origin. Here ε is determined by the first path expansion coefficient (e.g. ε= 22/dd/2π
for hypercubic lattices).

By taking n= 0 in equation (23), we obtain an approximation of the LGF itself:

hx (q)≈ RΦ
x;0 (q,ε) , (25)

where ε should be determined by some fitting procedure. The simplest fitting is by the first path
expansion coefficient, yielding a few-percent accuracy for the LGF at the origin (figure 5).
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4. Recurrence relations

The Laplace equation itself cannot provide a platform for recurrent evaluation of LGF in mul-
tiple dimensions. However, there is a hidden space-time symmetry due to translational invari-
ance, which can provide additional identities sufficient to derive one-dimensional recurrence
relations. By differentiating the Fourier transform of the propagator ˆ̃g(t,k) = etS(k) with respect
to ki and then taking the inverse Fourier transform, we obtain d identities for the propagator:

− t
xi

∑
|z|=1

zig̃x+z (t) = g̃x (t) , i = 1, . . . ,d, (26)

or equivalent identities for LGF and its integral:

1
xi

∑
|z|=1

zi gx+z (s) =−
ˆ ∞

s
gx (s

′) ds ′, i = 1, . . . ,d, (27)

where it is assumed that xi ̸= 0. Importantly, the right-hand side of equation (27) does not
depend on i, so that we have d− 1 identities for the LGF itself:

1
xi

∑
|z|=1

zi gx+z (s) = const, i = 1, . . . ,d, (28)

where the constant does not depend on i (but depends on x and s). Combined with the Laplace
equation, they provide the required recurrence relations at least for lattices with low enough
coordination number. The easiest recursion is to resolve the LGF plane-by-plane from a given
point to the origin. This requires the existence of a plane whose lattice points have no more
than d nearest neighbors at one side out of the plane. For the hypercubic lattice, any plane sat-
isfies this condition. For the simplectic honeycomb lattice Ad, including triangular and face-
centered cubic lattices, the condition is satisfied by Ad−1 plane. For the body-centered cubic
lattice, the required plane is (110). The computing path of such recurrences can be determ-
ined iteratively through recursive evaluations. Alternatively, it can be optimized to achieve
better linear scaling with distance. Usually, such a path has two parts: the first is to the nearest
high-symmetry point and then along the high-symmetry direction. The recurrence propagates
differences, thus requiring high-precision calculations at large s. It should be noted that known
recurrence schemes in two and three dimensions [9, 13] are different from the proposed one
but can be derived from it.

Since equation (28) includes only the nearest neighbors, the recurrence basis includes only
the origin and its symmetry-unique neighbors. For primitive isotropic lattices, we can write
the basis explicitly:

gx =
d∑

n=0

Pn gn, gn = ge1+e2+...+en , (29)

where ei are inversion-unique bond (edge) vectors (for hypercubic lattice they coincide with
the translation vectors), Pn are polynomials in s+w0 (or 1/q), and gn constitute the basis: the
LGF values at the seeding core of the recurrence equation. Here we assume that vectors ei are
chosen such that all the points e1 + e2 + . . .+ en are inequivalent by symmetry. The basis size
is d+ 1 because vectors e1, . . . ,ed taken with unit coefficients span all points within one unit
cell distance from the origin, whereas all other points are reducible to them by equation (29).
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Figure 6. Coordinate systems for (a) square and (b) triangular lattices. The fundamental
domain is bounded by the x1-axis and the dashed line. Recurrence scheme for evaluation
of g(4,2) for square lattice and g(3,2) for triangular one are shown by colored bonds. For
example, the value of g(4,2) can be obtained from known values of g(3,2),g(3,1),g(2,2)
by equation (32).

We will explicitly construct recurrence schemes for hypercubic and triangular lattices. For
the former, equation (28) reduces to

1
xi
Di gx = const, i = 1, . . . ,d, (30)

where (
Di f
)
x
= fx+ei − fx−ei . (31)

Using equation (30) we exclude all gx+ei for i = 2, . . . ,d from the Laplace equations yielding
the recurrence

gx+e1 = gx−e1 +
x1
|x|

(
(s+ 2d)gx− 2

d∑
i=1

gx−ei

)
(32)

illustrated in figure 6. The recurrence basis (29) is shown in figure 7 in terms of hn(q). For the
triangular lattice, equation (28) reduces to(

D1 −D3
)
gx

x1
=

(
D2 +D3

)
gx

x2
, (33)

where the three bond vectors are e1 = (1,0), e2 = (0,1), e3 = (−1,1), see figure 6. By exclud-
ing gx+e2 from the Laplace equation we obtain the recurrence

(x1 + x2)gx+e1 = (s+ 6)x1gx− (x1 − x2)gx−e1 − 2x1gx−e2 − (2x1 + x2)gx−e3 + x2gx+e3 ,
(34)

which should be propagated across the (11) lattice plane within the fundamental domain, as
shown in figure 6.
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Figure 7. Recurrence basis for the simple cubic lattice. The plotted functions are res-
caled as hn(q)/hn(1)/qn+1.

5. Series at zero

By differentiating equation (27) with respect to s we obtain

1
xi

∑
|z|=1

zi g
′
x+z = gx, (35)

which together with equation (29) to exclude non-basis functions produces a set of d+ 1 first-
order linear differential equations for g0, . . . ,gd with the coefficients linear in s. This set is
equivalent to a d-order linear differential equation for g0 with polynomial coefficients in s or
q. The reduced order is caused by the algebraic relationship between g0 and g1:

w0g1 = (s+w0)g0 − 1. (36)

We illustrate this approach for hypercubic LGF. To derive the differential equation, we combine
equation (30) written for en with the Laplace equation centered at gn to exclude ge1+...+en−1+2en

and obtain the set of equations for gn(s)

(s+ 2d)g ′
n− 2ng ′

n−1 − 2(d− n)g ′
n+1 = (n− 1)gn, n= 0, . . . ,d (37)

or equivalent set for h(q)

dq−n
(
qn−1hn

) ′
= nh ′

n−1 +(d− n)h ′
n+1. (38)

The determinant of the tridiagonal matrix at h′ is equal to Q(q)/Q(0), where

Q(q) =
[(d−1)/2]∏

k=0

(
q2 − q2k

)
, and qk =

d
d− 2k

(39)

11
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are the singularities of hypercubic LGF. The set of first-order equation (38) can be converted
into a single high-order equation for h0:

d∑
n=0

Qn (q)

(
q
d
dq

)n

h0 (q) = 0, (40)

where

Qd = Q, Qd−1 = dq4
d
dq2

Q(q)
q2

, Q0 = (−1)dQ(0) , (41)

and the rest of Qn are polynomials of q2 of the same order as Q.
Compared to the approach of [14], differential equations allow for a more efficient series

expansion of LGF at its singularities. We demonstrate this for the hypercubic lattice. All solu-
tions of equation (38) can be obtained as a series for the variable z= 1− q2 or p=

√
z [14]:

qn−1hn (q) = An
(
p2
)
+Z(p)Bn

(
p2
)
, Z(p) = pd−2

{
1 foroddd

ln(p0/p) forevend,
(42)

where A(z) and B(z) are analytic functions for |z|< 1 and p0 is a free parameter that can
be conveniently set to p0 = 4 for d= 2 and p0 = 1 otherwise. Because h1 is constrained by
equation (36), the set of equation (38) has d linearly independent solutions: d− 1 regular
(B= 0) and one singular (B ̸= 0). The Green’s function (42) can now be written as

qn−1hn (q) =
d∑

m=1

CmAmn
(
p2
)
+CdZ(p)Bdn

(
p2
)
+ δn1

(
C1 −

1
2d

)
, (43)

where regular solutions are labeled as Amn withm= 0, . . . ,d− 2 and the singular one is labeled
as Adn and Bdn, so that index m enumerates the differential equation basis and n enumer-
ates the recurrence basis. Here the functions Amn(z) are defined as solutions to equation (38)
with Am0(z) = zm+ o(zd−2), whereas the singular solution is obtained under the conditions
Bdn(0) = 1 and Ad0 = o(zd−2). The series for all Amn(z) and Bdn(z) have rational coefficients
that can be determined recursively using equation (38). The coefficient Cd at the singular part
was derived in [14]. The coefficients at regular solutions are zero in lower dimensions and
nontrivial in higher dimensions. They can be expressed in terms of hn(1) which should be
evaluated using another approach. For the simple cubic lattice,

C1 = h0 (1) , C2 =
9h0 (1)
32

+
3

64π2h0 (1)
(44)

in consistency with [16]. The accuracy of the series is illustrated in figure 8: it is decreasing
faster with distance from the origin compared to the path expansion series. Nevertheless, for
any value of the argument, either the path expansion series or series at singularities allows for
an efficient LGF evaluation with practically arbitrary precision.

12
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Figure 8. Error in evaluation of hn functions for simple cubic lattice by two kinds of
series without remainder near their convergence boundaries, which are q= 0 for series
in p (series at s= 0) and p= 0 for series in q (series at s=∞).

6. Conclusions

The discussed approaches implemented in this work allow for efficient evaluation of LGF for
simple lattices at any point of figure 1, that is for any value of coordinates and argumentℜs⩾ 0.
This includes approximate, arbitrary-precision, and symbolic computations. The existence of
a root-free band dispersion S(k) is the most critical for all methods: for the Fourier integral and
large-scale approximation it accelerates computations. For the path expansion series it allows
for obtaining explicit formulas for series coefficients and remainder. Recursive evaluation,
differential equation, and series at zero are known only for latices with a root-free S(k). The
developed two kinds of uniform approximations (large-scale and Lerch transcendent) for fast
generic evaluation of LGF show good accuracy for triangular and hypercubic lattices.

Several questions remain open for high-dimensional LGF (d> 3). First, it is unclear
whether recursive evaluation and representation (29) are possible for lattices with a high
coordination number such as face- and body-centered hypercubic lattices. Second, we might
expect a relationship between coefficientsCm in equation (43) for d> 3 similar to equation (44)
telling that the series at zero of the simple cubic LGF at any lattice point involves only one non-
trivial constant: the LGF value at the origin. In addition, the low accuracy of these series near
the natural convergence boundary (figure 8) might indicate their non-optimal representation.
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