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Lattice functions in physics
(theoretical physics (TP) and computational materials science (CMS))

• Lattice sums
▶ Coulomb sums

– CMS*: Ewald summation
– TP: exponential sums

▶ Dipole sums (e.g. infrared divergence of electron-phonon
couplings in Frolich model PRB 105, 214301 (2022))

• Partial difference equations
▶ Laplace equation on a lattice and tight-binding Hamiltonians

– CMS: Fourier transform
– TP: subject of this study

• Correlation functions of lattice models

These are special functions but essentially multidimensional†

=⇒ No generic implementation in generic software packages

* CMS needs universal approach robust for typical values of parameters,
TP needs arbitrary precision and analytic expressions for any values of parameters.
† Commonly used special functions are defined from 1D algebraic or difference
or differential equations and 1D sums or integrals.
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Lattice Green’s function: definition and evaluation methods
It is resolvent (“solution”) of Laplace operator on lattice:

Gxy (s) =
[
(s −∆)−1

]
xy

≡ Gx−y (s) Ĝ (s, k) ∼
(
s + k2

)−1

Gxy (s) =

∫ ∞

0
G̃xy (t)e

−st dt, where G̃xy (t) is propagator
(or transition probability of a random walk)
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Examples of use of lattice Green’s function
(Evaluation efficiency is critical beyond mean-field because of summation of G)

Gxy (s) =
[
(s −∆)−1

]
xy

≡ Gx−y (s) Ĝ (s, k) ∼
(
s + k2

)−1

• Electronic structure of crystals

• Quantum and statistical short-range lattice models

• Lattice models of disorder

4 / 14



What is wrong with Fourier integrals?
Benchmarking path expansion series and Fourier integral for evaluation of the Green’s
function of the simple cubic lattice

Parameters Exact Number of terms

s (x , y , z) precision value series sum Fourier

1 (0,0,0) single 0.170523807 0 40 100

1 (8,6,3) single 2.3 · 10−7 – 70 1000

1 (80,60,30) single 2.0 · 10−48 – 200 105*

0 (0,0,0) 1% 0.252731010 1 1000 4000

0 (0,0,0) 0.1% 1 ? 4 · 106

0 (0,0,0) single 100 ? ?

-4 (0,0,0) – – ?

‘series’ = ‘sum’ + series remainder (new result of this work)

* double-precision is insufficient
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State of the art and proposed advance
Before:*

2D: square, triangular, honeycomb
3D: bcc, fcc, diamond, simple cubic
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After:
Any lattice with

root-free band dispersion
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* Known recurrence formula in 3D are multi-page lattice-specific.
No efficient algorithm for regular part of series at singularities.
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Milestones and current state of the art
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1940 G000(0) for 3D* lattices [Watson]

1970 Efficient algorithms for 2D lattices &
proof-of-principle results for 3D lattices
[Katsura, Morita, Horiguchi etal ]

2000 More efficient formulas in 3D &
series at 0 for hypercubic [Joyce]

2010 Review and ideas for multiD lattices
[Zucker, Guttmann]

Open problems = targets of this study

• Efficient implementation (starting from 3D)
• Other lattices (starting from hypercubic, generic approaches)
• Series at singularity (partially solved for hypercubic [Joyce03])
• Series remainders
• Approximations (simple explicit formula with ∼5% accuracy)

2D = square, triangular, honeycomb; 3D = bcc, fcc, diamond, simple cubic
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Result 1: Recurrence relations and series at singularities
Two problems with existing recurrence schemes:

• cumbersome for analysis and implementation

• lattice-specific

There should be generic recurrence relations for “simple” lattices

“Simple”= translational invariance + root-free dispersion Sµ(k)

G0x(s) ≡ Gβα
ξ (s) =

1

(2π)d

∫
· · ·

∫ π

−π
Ĝβα(s, k)e−ikξ dk

Ĝβα(s, k) =
ν∑

µ=1

Pβα
µ (k)

s − Sµ(k)

For simplicity, let consider primitive lattices:

Ĝ (s, k) = (s − S(k))−1, S(k) =
∑
|z|=1

cos kz + const
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Result 1: Recurrence relations for primitive lattices

Ĝ (s, k) = (s − S(k))−1 and propagator ˆ̃G (t, k) = etS(k)

There is a hidden “space-time” symmetry:

∂Ĝ

∂ki
= − ∂S

∂ki
Ĝ ′ and

∂ ˆ̃G

∂ki
= t

∂S

∂ki

ˆ̃G

producing d identities:∑
|z|=1

zi
xi
Gx+z(s) = −

∫ ∞

s
Gx(s

′)ds ′, i = 1, . . . , d
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Result 1: Recurrence relations – outcome

For any “simple” lattice we get
• Recursive evaluation of Green’s function Gx(s), i.e. quasi-1D

structure of Gxy

• Finite basis Gx(s) =
∑d

n=0 Pn(s)Ge1+e2+...+en(s) with
polynomial coefficients, i.e. only d non-polynomial functions!

• d-order linear ODE with polynomial coefficients for G0(s),
=⇒ series expansion at singular points
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Result 2: Series, remainders, and approximations

Path expansion series in a general case:

Gxx(s) =
1

(s + wx)
+

∑
z: |x−z|=1

txz tzx
(s + wx)2(s + wz)

+ . . .

and for lattice of identical sites:

Gyx(s) =
∞∑
n=0

Nyx(n)

(s + w)n+1+|x−y |

where Nyx(n) is number of paths of length n and w is number of
neighbors.

For any “simple” lattice we get

• No more than 1-summation formula for Nyx recursively in d
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Result 2: Path expansion series remainder
By approximating Nyx(n) at large n using Stirling’s formula we get

Rn
yx = Cqn+1+|x−y |Φ(q, α, n + ε), where q =

w

s + w

and Φ is Lerch transcendent. Good results even for n = 0 or -1:
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Result 2: Large-scale approximation
For translationally invariant lattice

G̃x(t) =
1

(2π)d

∫
· · ·

∫ π

−π
etS(k)−ikx dk

can be evaluated with saddle point method.
Good results even for small x :
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Result 3: Implementation in LatticeTools package

• Open-source Maple code, 1000 lines for 100 functions

• Documented in Maple notebooks

• Hypercubic and triangular lattices are fully implemented

• Efficient to evaluate 5D hypercubic lattice on a laptop

• Other functionalities include calculation of diffusion and
mobility tensors as described in JPCC 117, 4920 (2013)
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