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Preface

See the project webpage at https://cmsos.github.io/lgf/. References to procedures from LatticeTools
package (https://zhugayevych.me/maple/LatticeTools/) are marked as [procedure name]. Main ideas of
this work have been published in [Zhugayevych25a].

§1. Lattices and their Green’s functions

1.1. Definitions

Graph is a collection of points (enumerable set X) and bonds (subset of symmetrized X2) with finite
coordination number, which is the maximum number of bonds attached to a point (i.e. simple undirected
finite-dimensional graph). In what follows we consider only connected graphs and denote a graph simply by
the set of its points X. The bonding between points establishes the metrics | · | as the length of the shortest
path between two points: |x− y|. If a graph can be immersed in Rd in such a way that the minimum distance
between its points is nonzero and the maximum length of its bonds is finite then the minimum d is called

https://cmsos.github.io/lgf/
https://zhugayevych.me/maple/LatticeTools/
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dimension of the graph (an example of infinite dimensional graph is a tree). The Euclidean metrics in Rd is
denoted by ∥x−y∥. Lattice is a finite dimensional graph whose all points are equivalent (i.e. for any two points
or bonds there exists graph automorphism transforming them into each other). A lattice is called isotropic if
all its bonds are also equivalent (an example of anisotropic lattice is hcp lattice). A lattice is called primitive
if all its points are translationally equivalent (e.g., sc, tri, fcc, bcc).

Laplace operator on X is defined as

(∆f)x =
∑

z: |x−z|=1

(fz − fx) ≡
∑

z: |x−z|=1

fz − wxfx,

where wx is the coordination number of the point x. Here and below a sum without limits means the sum over
X and a sum over |x − z| = 1 means the nearest neighbor sum. Lattice Green’s function is a resolvent of the
Laplace operator:

g(s) = (s−∆)−1. (1.1)

It satisfies the equation

sgyx − δyx =
∑

z: |x−z|=1

(gyz − gyx). (1.2)

Because the bonds are undirected gxy = gyx. Note that the inverse Laplace transformation of the lattice Green’s
function, g̃(t), obeys the equation ˙̃g = ∆g̃ with g̃(0) = δ.

From the general theory of Markov chains it follows that the spectrum of the Laplace operator on a graph
is real and lies within the segment [−2wmax, 0], where wmax = maxxwx. Here s = 0 is the eigenvalue with
eigenvector fx = 1 and multiplicity equal to the number of connected components of the graph. Any regular
infinite lattice of equivalent points can be partitioned into a finite number of equivalent sublattices so that each
sublattice has no bonds between its points. Examples: sc and bcc into 2 sc, gra into 2 tri, tri into 3 tri,
fcc into 4 sc, dia into 2 fcc. If p is the minimum number of such sublattices then w0p/(1− p) is the leftmost
eigenvalue with eigenvector fx = exp(i2πk/p), where k = 1, . . . , p is the index of the sublattice containing the
point x. In particular, the Green’s function of a bipartite lattice is odd or even function of an argument s−w0

depending on sublattice, namely

gx(s) = (−1)|x|+1gx(−s− 2w0). (1.3)

At the branch cut Green’s function is defined as follows

g±(s) = g(s± i0).

We assume g = g+, then g− = g. The density of states

ρx(σ) = − 1

π
ℑgxx(−σ). (1.4)

Lattice bond Green’s function is defined for a pair of directed bonds (x→ x′) and (y → y′) as follows

g(x,x′)(y,y′) = gx′y + gxy′ − gxy − gx′y′ , (1.5)

that is the special second order difference expression.

1.2. One-dimensional lattice

The case X = Z can be analyzed in details:

gx = g0α
|x|, (1.6)

where

g0(s) =
1√

s(s+ 4)
≡ q

2
√
1− q2

, α(s) = 1 +
s

2
−
√
s
(
1 +

s

4

)
≡ q

1 +
√

1− q2
.
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Figure 1: Methods available for efficient evaluation of
the Green’s function of a lattice with root-free disper-
sion Sµ(k).

Figure 2: Density of states rescaled by the bandwidth
for several lattices discussed in the text.

We have four alternative variables: s, q, α, and κ = − lnα. Here are relations between them:

α±1 = 1 +
s

2
∓
√
s
(
1 +

s

4

)
≡
(√

s+ 4∓
√
s

2

)2

, α̃(t) =
g1(t)

t
,

s+ 2 =
2

q
= α+ α−1 = 2 coshκ, s =

(1− α)2

α
, s+ 4 =

(1 + α)2

α
,

g0 =
α

1− α2
=

1

2 sinhκ
= (− lnα)′, gx =

(
−α

x

x

)′
, 2g1 =

1√
1− q2

− 1.

At the branch cut

g0(s) =
−i√

−s(s+ 4)
=⇒ ρ(σ) =

1

π
√
σ(4− σ)

(1.7)

and

s = −4 sin2
k

2
± iϵ, κ = ±ik +

ϵ

2 sin k
, α = e−κ.

The propagator

g̃x(t) = e−2tIx(2t), (1.8)

where I is the modified Bessel function. It satisfies the following recurrence relations:

˙̃gx = g̃x−1 + g̃x+1 − 2g̃x, xg̃x = t(g̃x−1 − g̃x+1). (1.9)

Finite and semi-infinite one-dimensional lattices are considered in Section 4.3.

1.3. Fourier transform

Points of a lattice can be enumerated by pairs (ξ, α), where ξ = (ξ1, . . . , ξd) is the coordinate of the unit cell,
which is the translationally invariant piece of the lattice of a minimum size, and α = 1, ν enumerates points
within the unit cell (e.g., for primitive lattices ν = 1, for gra and dia lattices ν = 2). Coordinates ξi ∈ Z for
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infinite lattice and ξi = 0, . . . , Li−1 for torus. This enables us to use Fourier transform for solving (1.2), which
for a function fx = fαξ is defined as

f̂α(k) =
∑
ξ

fαξ e
ikξ, (1.10)

where kξ =
∑d

i=1 kiξi. Its inverse for infinite lattice is given by

fαξ =
1

(2π)d

∫∫ π

−π
f̂α(k)e−ikξ dk, (1.11)

here and below we use shortcut notations for d-dimensional integrals over [−π, π]d. Generally the most efficient
way to compute Fourier integrals is to approximate it by a finite sum over a regular k-grid with a proper
symmetry [Morgan20]. The simplest grid approximates an infinite lattice by torus:

fαξ =
1

L1 . . . Ld

∑
k

f̂α(k)e−ikξ, ki =
2π(li + λi)

Li
, li = 0, . . . , Li − 1, (1.12)

where λi are shifts of the grid. By presenting Green’s function as gyx = gβαξ−η, where x = (ξ, α) and y = (η, β),
and applying Fourier transform to (1.2) we obtain a set of linear algebraic equations of the order ν:

sĝβα − δβα =
∑

ζ,γ: |ζ+γ−α|=1

(
e−ikζ ĝβγ − ĝβα

)
. (1.13)

By solving Eq. (1.13) and using the inverse Fourier transform (1.11) one can get the Green’s function. Since ĝ
is a nondefective matrix

ĝ =

ν∑
µ=1

Pµ(k)

s− Sµ(k)
=⇒ gβαξ (s) =

ν∑
µ=1

gβαξ;µ(s), gβαξ;µ(s) =
1

(2π)d

∫∫ π

−π

P βα
µ (k) e−ikξ

s− Sµ(k)
dk, (1.14)

where Pµ are resolution of the identity projectors (of a finite matrix ĝ) and Sµ(k) are dispersion relation for ν
bands (eigenvalues of ĝ). At the branch cut

ρβαξ;µ(σ) =
1

(2π)d

∫∫ π

−π
P βα
µ (k) δ (σ + Sµ(k)) e

−ikξ dk. (1.15)

Note that Sµ(k) < 0 for all µ and k except for the edge band at k = 0 for which S1(0) = 0.

1.4. Primitive lattices

For primitive lattices coordinates x can be identified with ξ, so that all formulas for ξ can be applied to x.
In particular, gyx = g0,x−y ≡ gx−y since the coordinates are additive: if x and y are lattice sites then x± y are
also lattice sites. Each bond can be associated with a unit vector ±ej , j = 1, . . . , δ, so that w0 = 2δ with δ ⩾ d.
We number the bond vectors ej in such a way that e1, . . . , ed are translation vectors, whereas ed+1, . . . , eδ are
linear combinations of translation vectors with coefficients ±1. The band dispersion can be written explicitly:

S(k) = −w0 +
∑
|z|=1

cos kz ≡ 2

δ∑
j=1

(cos kej − 1). (1.16)

The additive form of S(k) allows to factorize the propagator. Indeed, let select the k-vectors in such a way
that kei = ki for i = 1, . . . , d. Then

ˆ̃g(t, k) =

d∏
i=1

e2t(cos ki−1)−ikixi

δ∏
j=d+1

e2t(cos ke
j−1).

For each kej we add a fictious coordinate using the identity

f(kej) =

∫ π

−π
f(k′j)δ(k

′
j − kej) dk′j =

∑
x′
j∈Z

eike
jx′

j
1

2π

∫ π

−π
f(k′)e−ik′jx

′
j dk′j .
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Therefore the propagator is fully factorized:

g̃x(t) = e−w0t
∑

x′
d+1,...,x

′
δ∈Z

d∏
i=1

Ixi−zi(2t)

δ∏
j=d+1

Ix′
j
(2t), zi =

δ∑
j=d+1

ejix
′
j , (1.17)

where eji is i-th lattice coordinate of j-th bond vector. Now it is easy to see that

gx =
∑

x′∈Zδ−d

ghcx1−z1,...,xd−zd,x
′
d+1,...,x

′
δ
, (1.18)

where ghc is the Green’s function of the hypercubic lattice. In practice, there might exist a transformation of
k-vectors such that the number of terms in Eq. (1.16) is minimized to minimize the number of summations
in Eq. (1.17), especially for closed packed lattices for which the difference δ − d is large. Also there might be
reduction to the Green’s function of lattices other than hypercubic.

It is useful to introduce finite difference operators similar to the gradient in Rd:

(∂jf)x = fx+ej − fx, (∂−jf)x = fx − fx−ej , ∆j = ∂−j∂j , Dj = ∂−j + ∂j ≡ fx+ej − fx−ej ,

so that ∆ =
∑

j ∆
j . We will omit parentheses, writing ∂jfx and so on. Some properties of these operators are

described in Appendix 4.1. In this notations bond Green’s function (1.5) can be written as

g(x,x+ei)(y,y+ej) = ∂i∂−jgx−y = gx−y+ei + gx−y−ej − gx−y − gx−y+ei−ej ≡ ∂j∂−igy−x.

For a primitive isotropic lattice, the function G(x1, . . . , xδ) = gx1e1+...+xδeδ
is symmetric with respect to

permutations of arguments and inversion. The “full symmetry” contain also other elements whose representa-
tion depends on the lattice type and choice of the coordinate system. Four classes of primitive isotropic lattices
are considered here since they fully cover dimensions up to d = 3. The first is the hypercubic lattice Zd which
is symmetric with respect to sign inversion at each coordinate independently. The second is body-centered
hypercubic lattice Id which is primitive but is more convenient to describe in cubic coordinates. The 2d nearest
neighbors and the primitive translations are given by

es1...sd =
d∑

j=1

sjϵ
j/2, sj = ±1, ei = ϵi −

d∑
j=1

ϵj/2, i = 1, . . . , d, (1.19)

where ϵi are unit vectors of the cubic cell. The third is a face-centered hypercubic lattice corresponding to the
Dd root system. It is the sublattice of Zd with even |x| so it is more convenient to describe it in the cubic cell.
The 2d(d− 1) nearest neighbors and the primitive translations are given by

eij = (±ϵi ± ϵj)/2, 1 ⩽ i < j ⩽ d, ei = (ϵi + ϵi+1)/2, i = 1, . . . , d− 1, ed = (ϵd − (−1)dϵ1)/2, (1.20)

where the ± signs are independent. The fourth is the simplectic honeycomb lattice of the root system Ad. It is
the hyperplane

∑d+1
i=1 xi = 0 of Zd+1. The d(d+ 1) nearest neighbors and the primitive translations are given

by
eij = ϵi − ϵj , 1 ⩽ i ̸= j ⩽ d+ 1, ei = ϵi − ϵd+1, i = 1, . . . , d. (1.21)

1.5. Continual and large-scale approximations

At large scales Green’s function of any lattice tends to the resolvent of Laplacian in Rd which is [gfunRd]

g(s, x) =
1

(2π)d/2

(√
s

∥x∥

) d
2
−1

K d
2
−1

(√
s∥x∥

)
. (1.22)

In particular,

gd=1(s, x) =
e−

√
s∥x∥

2
√
s

, gd=2(s, x) =
K0 (

√
s∥x∥)

2π
, gd=3(s, x) =

e−
√
s∥x∥

4π∥x∥
.
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The inverse Laplace transformation of this function is the propagator of the diffusion equation [propRd]:

g̃(t, x) =
1

(4πt)d/2
exp

(
−∥x∥2

4t

)
, (1.23)

which has maximum at ∥x∥2 = 2dt. The Fourier transforms have even simpler form:

ĝ(s, k) =
1

s+ ∥k∥2
, ˆ̃g(t, k) = e−t∥k∥2 .

To approximate a lattice Green’s function by Eq. (1.23), the latter must be properly rescaled:

g̃lat(t, x) =
V1

(4πDt)d/2
exp

(
−∥x∥2

4Dt

)
, (1.24)

where V1 is the volume per lattice point and D = w0/(2d) is the diffusion constant (both are unit for hypercubic
lattice).

A more accurate description can be obtained within the large-scale approximation. It is easier to develop
it for propagators and then perform the Laplace transformation of the result. The propagator of Eq. (1.14) is

g̃βαξ;µ(t) =
1

(2π)d

∫∫ π

−π
P βα
µ (k) etSµ(k)−ikξ dk. (1.25)

At large t and ξ this integral can be calculated by the saddle-point method. For simplicity we consider here
primitive lattices with a generic dispersion, so that

g̃x(t) =
1

(2π)d

∫∫ π

−π
etS(k)−ikx dk. (1.26)

The saddle point of the exponent is at k = −iκ, where κ ≡ κ(t) is a solution of the equations

∂S̃

∂κi
=
xi
t
, i = 1, . . . , d, where S̃(κ) = S(−iκ). (1.27)

When the integration path in Eq. (1.26) is shifted by −iκ, the integrand has a sharp maximum at zero and
reduced oscillations on the path, so that the integral can be approximated by the Gaussian one:

g̃x(t) =
1

(2π)d

∫∫ π

−π
etS(k−iκ)−κx−ikx dk ≈ etS̃(κ)−κx√

det 2πtS̃′′(κ)
, (1.28)

where S̃′′ is the Hessian. If t → ∞, κ → 0 and S̃(κ) ∼ κ2 yielding κ ∼ x/t thus exactly recovering the

continuum Green’s function (1.24), provided that det S̃′′(0)
2D = V −2

1 .
The Laplace transformation of Eq. (1.28) can be performed only approximately by quadratic expansion of

the exponent at the integrand’s maximum (a variant of the saddle-point method) yielding:

gx(s) ≈
√

2π

− ˙̃S

e−κx√
det 2πtS̃′′

with the equation S̃(κ(t)) = s for t, (1.29)

where dot means time derivative, argument of S̃ is omitted for clarity, and

− ˙̃S ≡ − κ̇x
t

≡ t

d∑
i,j=1

S̃′′
ij κ̇iκ̇j , so that κ̇ = −(S̃′′)−1x

t2
. (1.30)

For small s

t =
∥x∥
2
√
s

=⇒ gx(s) ≈
1

2
√
s

( √
s

2π∥x∥

) d−1
2

e−∥x∥
√
s. (1.31)

Because of additional approximations made during the Laplace transformation, only the leading term of the
continuum Green’s function (1.22) is reproduced as ∥x∥

√
s→ ∞. Nevertheless, numerical tests show that the

large-scale approximation is accurate even for small x, see Fig. 12.
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1.6. Path expansion

The Green’s function of any graph can be calculated using the series

g(s) =
1

s+ w

∞∑
n=0

(
∆+ w

s+ w

)n

=
1

s+ w

(
1 +

∆+ w

s+ w

(
1 +

∆+ w

s+ w
(1 + . . .)

))
, (1.32)

which is convergent for large enough s. Here w is a constant or a function of x. We will assume that w ⩾ wx

so that all terms of the series are positive. If w = wx then Eq. (1.32) is the path expansion since ∆+w in this
case contains only nondiagonal terms. In particular,

gxx(s) =
1

(s+ wx)
+

∑
z: |x−z|=1

txztzx
(s+ wx)2(s+ wz)

+ . . . (1.33)

where txz = tzx = 1 for undirected bonds of unit strength. If w is a constant then Eq. (1.32) can be written
explicitly as

gyx(s) =
∞∑
n=0

Nyx(n)

(s+ w)n+1+|x−y| , (1.34)

where Nyx are integers for an integer w. If wx = w then Nyx(n) is the number of paths of length n + |x − y|
between points x and y.

For a regular lattice, path expansion coefficients can be calculated from the Fourier integral (1.14):

gβαξ (s) =

∞∑
n=0

Nβα
ξ (n)

(s+ w)n+1+|ξ| , Nβα
ξ (n) =

1

(2π)d

∫∫ π

−π

ν∑
µ=1

P βα
µ (k) (w + Sµ(k))

n+|ξ| e−ikξ dk. (1.35)

For many simple lattices, Sµ and P βα
µ are polynomials of eimk-like terms (see e.g. Eq. (1.16)), and therefore by

expansion of P βα
µ ·(w+Sµ)

n′
the multidimensional integral (1.35) can be reduced to a multiple sum of products

of one-dimensional trigonometric integrals which can be calculated using the formula

1

π

∫ π

0
(2 cos k)2n+x cos kx dk =

(
2n+ x

n

)
. (1.36)

Evidently the best choice of the parameter w and the k-space basis is to minimize the number of terms in
w + Sµ (see example of the triangular lattice below). Importantly, the products of one-dimensional integrals
can usually be combined into path expansion coefficients of the lower-dimensional lattices, so that the multiple
sum can be reduced to a single sum using the dimensional recursion (see e.g. Eq. (2.7)).

It is convenient to introduce the variable q and the function

hx(q) = gx(s(q)), q =
w

s+ w
, s = w

1− q

q
, (1.37)

because under proper choice of w, the path expansion coefficients are positive, the Green’s function hx(q) is
analytic for |q| < 1, has a singularity at q = 1, and is odd or even function of q for a bipartite lattice. In what
follows we assume that w satisfies the above conditions. Now the series (1.35) can be written as

hβαξ (q) =

∞∑
n=0

cβαξ;nq
n+1+|ξ|, cβαξ;n =

Nβα
ξ (n)

wn+1+|ξ| . (1.38)

For large n and small Sµ, the power function in Eq. (1.35) can be approximated by the exponent (w+Sµ)
n′ ≈

wn′
etSµ , where t = (n′ + ε)/w and ε is a fitting parameter such that ε = 0 corresponds to the upper boundary.

If w > −mink Sµ(k) then the maximum of Sµ(k) makes the dominant contribution to the Fourier integral.
However, for some lattices the convenient choice of w might include k-points with w = −mink Sµ(k), so that
their contributions should be taken into account too. Therefore,

cβαξ;n ≈ σn
w
g̃βαξ

(
n+ ε+ |ξ|

w

)
, (1.39)
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where σn accounts for symmetry, e.g. for bipartite lattices if w is half-bandwidth then σ2n = 2 and σ2n+1 = 0.
The fact that all terms of the series (1.38) are positive simplifies estimation of the series remainder

Rβα
ξ;n(q) =

∞∑
k=n

cβαξ;kq
k+1+|ξ| (1.40)

for both error control and approximations. From Eq. (1.35) we can obtain Fourier integral representation

Rβα
ξ;n =

1

(2π)d

∫∫ π

−π

ν∑
µ=1

P βα
µ (k)

(
w + Sµ(k)

w + s

)n+|ξ| e−ikξ dk

s− Sµ(k)
, (1.41)

but it is unclear how to estimate it. Therefore, we approximate the series coefficients and then sum up the
result. The estimate (1.39) is accurate but gives too complicated series even if the continuum propagator (1.24)
is used. A possible workaround is to approximate the latter by a “summable” function:

g̃lat(t, x) =
V1

(4πDt)d/2
exp

(
−∥x∥2

4Dt

)
≲ V1

( w

4πD

)d/2 (
wt+

w

2dD
∥x∥2

)−d/2
(1.42)

resulting in

cβαξ;n ≈ σnV1
w

( w

4πD

)d/2 (
n+ ε+ |ξ|+ w

2dD
∥ξ∥2

)−d/2
. (1.43)

Now Eq. (1.40) can be summed up explicitly resulting in

Rβα
ξ;n(q) ≈ RΦ

ξ;n(q, ε) (1.44)

where ε is a parameter and functional form of RΦ depends on σn:

RΦ
ξ;n(q, ε) =

V1
w

( w

4πD

)d/2
qn+1+|ξ| Φ

(
q,
d

2
, n+ ε+ |ξ|+ w

2dD
∥ξ∥2

)
, for σn = 1, (1.45a)

RΦ
ξ;2n(q, ε) =

2V1
w

( w

8πD

)d/2
q2n+1+|ξ| Φ

(
q2,

d

2
, n+

1

2

(
ε+ |ξ|+ w

2dD
∥ξ∥2

))
, for σ2n = 2, σ2n+1 = 0,

(1.45b)

where Φ is the Lerch transcendent function. According to Eq. (1.42), these approximations are accurate if

n+ |ξ| ≫ w

2dD
∥ξ∥2, (1.46)

otherwise they provide only the upper boundary. The best estimate is expected for the value of ε corresponding
to the large-n asymptotics of the path expansion coefficients, which we denote by ε∞. Then the strict upper
boundary can be obtained with εup ⩽ ε∞. A tight lower boundary in the functional form of Eq. (1.43) is
meaningful only for small ξ with some εlow > ε∞, see Figs. 7 and 8. In a general case, the lower boundary is
zero. Values of the discussed above parameters for some lattices are listed in Table 1

Table 1: Values parameters used in Eqs. (1.43) and (1.45) for some lattices. The εup is determined by numeric
test for path expansion coefficients.

Lattice σn V1 D ε∞ εup

hypercubic 2/0 1 1 1/2 1/4d⩽6

triangular 1
√
3/2 3/2 1/3 1/3

By taking n = 0 in Eq. (1.45) we obtain the approximation to Green’s function itself:

hx(q) ≈ RΦ
x;0(q, ε), (1.47)

where ε should be determined by some fitting procedure. The simplest fitting is by the first path expansion
coefficient yielding accurate approximation for the Green’s function at origin, see Fig. 3. See other examples
in Fig. 4.
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Figure 3: Lerch transcendent approximation to
Green’s function of several lattices at origin. Here
ε is determined by the first path expansion coefficient
(e.g. ε = 22/dd/2π for hypercubic lattices).

Figure 4: Error of approximation of the hypercubic
Green’s function at origin by Lerch transcendent. Dif-
ferent colors correspond to dimensions 1 to 4. The
lower and upper boundaries are obtained by fitting
values at q = 0 and q = 1.

1.7. Recurrence formulas and series at singularities

The Laplace equation itself cannot provide a platform for recurrent evaluation of the Green’s function in
multiple dimensions. However, there is a hidden space-time symmetry due to the translational invariance
which can provide additional identities enough to derive one-dimensional recurrence relations. For simplicity
we consider primitive lattices but discussed ideas can be applied to any lattice with a root-free dispersion S(k).
By differentiating the Fourier transform of the propagator ˆ̃g(t, k) = etS(k) with respect to ki and then taking
the inverse Fourier transform, we get d identities for the propagator:

− t

xi

∑
|z|=1

zig̃x+z(t) = g̃x(t), i = 1, . . . , d, (1.48)

or equivalent identities for the Green’s function and its integral:

1

xi

∑
|z|=1

zigx+z(s) = −
∫ ∞

s
gx(s

′) ds′, i = 1, . . . , d, (1.49)

where it is assumed that xi ̸= 0. Note that the sum can be written in terms of the bond vectors:

∑
|z|=1

zifx+z ≡
δ∑

j=1

ejiD
jfx. (1.50)

Importantly, the right-hand side of Eq. (1.49) does not depend on i, so that we have d − 1 identities for the
Green’s function itself:

1

xi

∑
|z|=1

zigx+z(s) = const(i), i = 1, . . . , d. (1.51)

Combined with the Laplace equation they provide the required recurrence relations at least for lattices with
low enough coordination number. The easiest recursion is to resolve gx plane-by-plane from a given point to
the origin. It requires existence of a plane whose lattice points have no more than d nearest neighbors at
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one side out of the plane. For hypercubic lattices any plane satisfies this condition. For simplectic honeycomb
lattice Ad, including triangular and face-centered cubic lattices, the condition is satisfied by Ad−1 plane which is
(11 . . . 1) plane in the coordinate system (1.21). For the body-centered cubic lattice the required plane is (110).
The computing path of such recurrences can be determined iteratively by recursive evaluations or optimized
to achieve a better linear scaling with distance. Usually such a path has two parts: the first is to the nearest
high-symmetry point and then along the high-symmetry direction. The recurrence propagates differences thus
requiring high-precision evaluations at large s. It should be noted that known recurrence schemes in two-
dimensional [Morita71b] and three-dimensional [Joyce02] cases are different from the proposed scheme but can
be derived from it.

Because Eq. (1.51) includes only nearest neighbors, the recurrence basis includes only the origin and its
symmetry-unique neighbors. For primitive isotropic lattices we can write the basis explicitly:

gx =

d∑
n=0

Pn gn, gn = ge1+e2+...+en , (1.52)

where Pn are polynomials in s + w0 (or 1/q) and gn constitute a “basis”: values of the Green’s function at
the seeding core of the recurrence equation. Here we assume that vectors ei are chosen in such a way that all
points e1 + e2 + . . .+ en are inequivalent by symmetry. The basis size is d+ 1 because vectors e1, . . . , ed taken
with unit coefficients span all points within one unit cell distance from the origin, whereas all other points are
reducible to them by Eq. (1.52).

By differentiating Eq. (1.49) we obtain

1

xi

∑
|z|=1

zig
′
x+z = gx, (1.53)

which together with Eq. (1.52) to exclude non-basis functions will produce a set of d + 1 first-order linear
differential equations for g0, . . . , gd with the coefficients linear in s. This set is equivalent to a d-order linear
differential equation for g0 with polynomial coefficients in s or q. The reduced order is caused by the algebraic
relation between g0 and g1 (for an isotropic lattice):

w0g1 = (s+ w0)g0 − 1. (1.54)

For example, in one dimension we have{
(s+ 2)g′1 = 2g′0,

2g1 = (s+ 2)g0 − 1,
=⇒ s(s+ 4)g′0 + (s+ 2)g0 = 0 or q(1− q2)h′0 − h0 = 0.

These equations can be used in particular for performing series expansion at singularities since alternative
approaches are challenging [Joyce03a].

1.8. Evaluation of lattice Green’s functions

Besides the one-dimensional case the evaluation of lattice Green’s functions is nontrivial. Available methods
can be summarized as follows (see also Fig. 1):

• Fourier integrals (1.14) are the most universal since they provide a solution for any lattice at any values of
arguments. However, they are computationally inefficient at singularities and large x, requiring ultrafine
k-grids and use of arbitrary-precision arithmetic for large x, see Table 2. Note that the dimension of the
integral can be reduced if a lower-dimensional Green’s function is known.

• Path expansion (1.34) is very efficient for ℜs ⩾ 0 if its coefficients are known. Since all summands are
positive, one can get also the error bar. For the hypercubic lattice the computational bottleneck in Maple
is the evaluation of the Lerch transcendent function providing the estimate of the series remainder.

• If outward recurrence relations are known, it is enough to calculate the Green’s function at several points
near the origin and then use the recurrence to evaluate its value at other points. It is especially useful
because for all simple 2D and 3D lattices, g0(s) can be represented in terms of known special functions.
However, for large x use of arbitrary-precision arithmetic is required to prevent the precision loss.
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• If propagator is known, Laplace integrals (2.3) can be used by they are not efficient for computations.

• Large-scale approximation (up to the continuum approximation (1.22)) is useful for large x but has finite
precision.

Table 2: Benchmarking path expansion series and Fourier integral for evaluation of the Green’s function of
the simple cubic lattice. Here ‘series’ means Eq. (1.34) with the remainder estimated by Eq. (1.45a), ‘sum’
means the series without remainder, and ‘Fourier’ means Eq. (1.14) with half-shifted uniform k-grid. Question
marks denote hardly computable cases. Also, at large distances the remainder Eq. (1.45a) is not precise. Single
precision means relative error below 10−8. The asterisk * indicates insufficiency of double-precision calculations.

Parameters Exact Number of terms

s (x, y, z) precision value series sum Fourier

1 (0,0,0) single 0.170523807 0 40 100

1 (8,6,3) single 2.3 · 10−7 – 70 1000

1 (80,60,30) single 2.0 · 10−48 – 200 105*

0 (0,0,0) 1% 0.252731010 1 1000 4000

0 (0,0,0) 0.1% 100 ? 4 · 106

0 (0,0,0) single 100 ? ?

§2. Hypercubic lattice

2.1. General statements

For convenience we will use three different arguments of the Green’s function:

gx(s) = Gx(ω) = hx(q), s+ 2d = ω = 2d/q, (s+ 2d)
dg

ds
= ω

dG
dω

= −q dh
dq
. (2.1)

In the literature another function is sometimes used: GJoyce
x (ωJoyce) = 2Gx(ω) with 2ωJoyce = ω. The hypercubic

lattice is primitive, δ = d, |x| = |x1| + . . . + |xd| [latDscCD], and ∥x∥2 = x21 + . . . + x2d [latDscED2], see also

Fig. 5. The dispersion is S(k) = −2d+ 2
∑d

i=1 cos ki, and the optimal k-grid is shifted by λ = 1/2 allowing to
calculate g at singularities. The propagator is factorized [latDscp]:

g̃x(t) = e−2dt
d∏

i=1

Ixi(2t) (2.2)

allowing for another integral representation of Green’s function [latDscgI]:

gx(s) =

∫ ∞

0
e−st−2dtIx1(2t) . . . Ixd

(2t) dt. (2.3)

This integral diverges for ℜs < 0, therefore another one is used converging for ℑs > 0 [latDscgI alt]:

gx(s) = i−1−x1−...−xd

∫ ∞

0
ei(s+2d)τJx1(2τ) . . . Jxd

(2τ) dτ. (2.4)

The function G(ω) is odd or even according to Eq. (1.3), thus it is sufficient to consider ω ⩾ 0. It is
analytical function with branch cut [−2d, 2d] and singularities at the points: ω = −2d,−2d+ 4, . . . , 2d− 4, 2d
(or s = −4d, . . . ,−4, 0). At infinity it has a simple pole: G(ω) = 1/ω+2d/ω3+ . . . In terms of Fourier integrals,
G can be evaluated recurrently in d with the use of the identity

G(ω;x1, . . . , xd) =
1

π

∫ π

0
G(ω − 2 cos kd;x1, . . . , xd−1) cos kdxd dkd.
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Figure 5: Square lattice coordinate system and no-
tations. Cartesian vectors corresponding to k1 and
k2 are shown as blue arrows. Recurrence scheme for
evaluation of g(4,2) is shown by colored bonds.

Figure 6: Two approximations of path expansion co-
efficients for simple cubic lattice.

As a function of spatial coordinates, g(s;x1, . . . , xd) is symmetric with respect to any permutation of
arguments and any inversion of their signs, so that it is sufficient to consider the fundamental domain x1 ⩾
x2 ⩾ . . . ⩾ xd ⩾ 0 [latDscX]. When summing up the symmetric function over the lattice it is necessary to
know the orbits [latDscO] of the symmetry group and their sizes [latDscONT]. Let us denote the permutation
group by Sd and the symmetry group of the hypercubic lattice by S′

d. Orbits of S′
d can be enumerated by

incomplete ordered partitions of the integer d as follows. For any partition P = {d1, . . . , dk}, d1 > . . . > dk > 0
the corresponding orbit contains points0, . . . , 0︸ ︷︷ ︸

d0

, x1, . . . , x1︸ ︷︷ ︸
d1

, . . . , xk, . . . , xk︸ ︷︷ ︸
dk

 ,

where d0 = d − d1 − . . . − dk and x1, . . . , xk are distinct nonzero numbers. The stabilizer of this orbit is
Sd1 ⊗ . . .⊗ Sdk ⊗ S′

d0
, hence the orbit size

|P | = 2d−d0

(
d

d0, d1, . . . , dk

)
.

2.2. Path expansion

Here we assume that xi ⩾ 0. Coefficients Nx(n) ≡ N0x(n) in the series (1.34) can be obtained from Eq. (2.3)
[latDscN]:

Nx(2n) =

∑
i ni=n∑
ni⩾0

(
2n+ |x|

n1, n1 + x1, . . . , nd, nd + xd

)
, Nx(2n+ 1) = 0, (2.5)

where the expression in the parentheses denote multinomial coefficients. The leading term of the expansion is

gx(s) ∼
(

|x|
x1, . . . , xd

)
1

(s+ 2d)1+|x| . (2.6)

The sum (2.5) can be evaluated recursively in d [Maassarani00]:

Nx(2n) =

n∑
k=0

N(x1,...,xm)(2k)

(
2n+ |x|

2k + x1 + . . .+ xm

)
N(xm+1,...,xd)(2n− 2k) (2.7)
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Figure 7: Error in evaluation of the Green’s func-
tion of the simple cubic lattice at origin by path
expansion with different ϵup,low − ϵ∞ (shown in
parentheses) in the remainder (1.45b).

Figure 8: The same as in Fig. 7 but at the lattice
point (1, 1, 1) and with different ϵlow.

starting with explicit formulas for d = 1, 2:

N(x)(2n) =

(
2n+ x

n

)
, N(x,y)(2n) =

(
2n+ x+ y

n

)(
2n+ x+ y

n+ x

)
. (2.8)

2.3. Recurrence relations and series at s = 0

For hypercubic lattice Eq. (1.51) reduces to

1

xi
Digx = const(i), i = 1, . . . , d, (2.9)

yielding the recurrence:

gx+e1 = gx−e1 +
x1
|x|

(
(s+ 2d)gx − 2

d∑
i=1

gx−ei

)
. (2.10)

The expansion coefficients Pn in Eq. (1.52) are polynomials in s + 2d of the degree maxi |xi| − 1. The same
recursion can be applied to path expansion coefficients yielding

Nx+e1(2(n− 1)) = Nx−e1(2n) +
x1
|x|

(
Nx(2n)− 2

d∑
i=1

Nx−ei(2n)

)
. (2.11)

The recurrence basis of Eq. (1.52) is shown in Fig. 9 in terms of hn(q). To obtain the differential equation
for the basis functions, we combine Eq. (2.9) written for en

g′n+en − g′n−1 = gn

with the Laplace equation centered at gn

(s+ 2d)gn = n(gn+en + gn−1) + 2(d− n)gn+1,
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Figure 9: Recurrence basis for the simple cubic lat-
tice. The functions are rescaled as hn(q)/hn(1)/q

n+1.

Figure 10: Error in evaluation of hn functions for
simple cubic lattice by two kinds of series near their
convergence boundary.

where n+ en ≡ e1 + . . .+ en−1 + 2en. By excluding gn+en , we arrive to the set of equations for gn(s)

(s+ 2d)g′n − 2ng′n−1 − 2(d− n)g′n+1 = (n− 1)gn (2.12)

or equivalent set for h(q)

h′n − (n/d) qh′n−1 − (1− n/d )qh′n+1 = (1− n) q−1hn ⇐⇒ dq−n(qn−1hn)
′ = nh′n−1 + (d− n)h′n+1. (2.13)

The determinant of the tridiagonal matrix at h′ is equal to Q(q)/Q(0), where

Q(q) =

[(d−1)/2]∏
k=0

(q2 − q2k), and qk =
d

d− 2k
(2.14)

are singularities of the Green’s function. The set of first-order equations (2.13) can be converted to a single
high-order equation for h0:

d∑
n=0

Qn(q)

(
q
d

dq

)n

h0(q) = 0, Qd = Q, Qd−1 = dq4
d

dq2
Q(q)

q2
, Q0 = (−1)dQ(0), (2.15)

and the rest of Qn are polynomials of q2 of the same order as Q. The conversion matrix from deriva-

tives {h′0, h′′0, . . . , h
(d)
0 } to set {h0, h2, h3, . . . , hd} is polynomial in q divided by some power of q. Notice

absence of h1 in this set, which relates to h0 via Eq. (1.54). Such conversion allows to replace the basis

{g0, ge1 , ge1+e2 , . . . , ge1+e2+...+ed} in Eq. (1.52) by {g0, g′0, . . . , g
(d−1)
0 , 1} which includes only g0 and its deriva-

tives.

All solutions of Eq. (2.13) can be obtained as series in the variable z = 1− q2 or p =
√
z:

qn−1hn(q) = An(p
2) + Z(p)Bn(p

2), Z(p) = pd−2

{
1 for odd d,

ln(p0/p) for even d,
(2.16)

where A(z) and B(z) are analytic functions for |z| < 1 and p0 is a free parameter which is convenient to set
to p0 = 4 for d = 2 and p0 = 1 otherwise. If we constrain h1 by Eq. (1.54), then Eq. (2.13) will have d linear
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Figure 11: Convergence of s = 0 series at q = 0.
Here the rearrangement is aimed to get the correct
asymptotics at q = 0, but that increases the error for
nonzero q.

Figure 12: Large-scale approximation for simple cubic
lattice is accurate even for small values of coordinates.

independent solutions: d− 1 regular (B = 0) and one singular (B ̸= 0). The Green’s function (2.16) can now
be written as

qn−1hn(q) =
d∑

m=1

CmAmn(p
2) + CdZ(p)Bdn(p

2) + δn1

(
C1 −

1

2d

)
, (2.17)

where regular solutions are labeled as Amn withm = 0, . . . , d−2 and the singular one is labeled as Adn and Bdn,
so that index m enumerates the differential equation basis and n enumerates the recurrence basis. Here Amn

are defined as solutions of Eq. (2.13) with Am0(z) = zm + o(zd−2), whereas the singular solution is obtained
under the conditions Bdn(0) = 1 and Ad0 = o(zd−2). Series for all Amn(z) and Bdn(z) have rational coefficients
which can be determined recursively using Eq. (2.13). The coefficient at the singular part is given by [Joyce03a]

Cd = (−1)[
d−1
2 ] 1

2dΓ(d/2)

(
d

π

)d/2−1
{
1 for odd d,

2/π for even d.
(2.18)

Coefficients at regular solutions are zero in lower dimensions and nontrivial in higher dimensions, e.g., for d = 3

C1 = h0(1), C2 =
9h0(1)

32
+

3

64π2h0(1)
.

Technical details are given in Section 4.5. Accuracy of the series is shown in Fig. 10: it is decreasing with
distance from the origin faster than for path expansion series. Details of that inaccuracy are shown in Fig. 11.

2.4. Large-scale approximation

Here we assume that xi ⩾ 0. Since the propagator is factorized for the hypercubic lattice, it is sufficient
to consider the one-dimensional case. We have S̃ = 2(coshκ − 1), and Eq. (1.27) can be solved explicitly
reproducing the uniform approximation of the Bessel functions:

g̃x(t) ≈
exp [2t(coshκ− 1− κ sinhκ)]√

2πt coshκ
, sinhκ =

x

2t
. (2.19)
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For the Green’s function, Eq. (1.29) reduces to [latDscgL]

gx(s) ≈ Qx(s) ≡
1

2
(4πt)

1−d
2

(
d∏

i=1

coshκi ·
d∑

i=1

sinh2 κi
coshκi

)−1/2

exp

(
−

d∑
i=1

κixi

)
, sinhκi =

xi
2t
, (2.20)

where the equation for t transforms to

d∑
i=1

(√
1 +

x2i
4t2

− 1

)
=
s

2
. (2.21)

Note that
maxi xi√
s (4 + s)

⩽ t ⩽
maxi xi√
s
d

(
4 + s

d

) ≡ qmaxi xi
2p

,

where the left equality is reached when all xi are equal and the right equality is reached when all but one xi
are zero. For large s, |x|/t ≈ s+ 2d and eκi ≈ xi/t are large, and Q approximates the leading term (2.6):

Qx(s) ≈ (2π)
1−d
2

|x||x|+1/2∏d
i=1 x

xi+1/2
i

1

(s+ 2d)1+|x| .

Alternatively, we can approximate the sum (1.34) together with the nested sums (2.5) by an integral and
use Stirling’s formula to approximate factorials:

gx(s) ≈
1

s+ 2d

∫
n

√
2π(2n+ |x|)∏d

i=1 4π
2ni(ni + xi)

eS(n1,...,nd) dn1 . . . dnd,

where

S(n1, . . . , nd) = (2n+ |x|) ln(2n+ |x|)−
d∑

i=1

[ni lnni + (ni + xi) ln(ni + xi) + (2ni + xi) ln(s+ 2d)] .

Now we will use Laplace’s method to evaluate the integral. The extremum of S is reached at ni satisfying the
equation ni(ni + xi) = t−2, where t = 2n+|x|

s+2d (we will use the same notations for integrating variables and the
their values at the extremum). The equation for this t coincides with Eq. (2.21). The Hessian is

∂2S

∂xi∂xj
=

4

2n+ |x|
− δij

2ni + xi
ni(ni + xi)

≡ 2

t

(
1

d+ s/2
− δij coshκi

)
,

so that

det
(
−S′′) = [ d∑

i=1

4ni(ni + xi)

(2n+ x)(2ni + xi)
− 1

]
d∏

i=1

2ni + xi
ni(ni + xi)

,

and we arrive to Eq. (2.20). The eigenvalues of the Hessian satisfy the equation

d∑
i=1

1

λt/2 + coshκi
= d+ s/2.

We see that at large s the eigenvalues are large: λi ≈ −xi/t2, whereas at small s they are small and isotropic:
λ ≈ −2s/dt, thus clarifying the limited accuracy of Eq. (2.20) at small s.

2.5. Periodic hypercubic lattice

For periodic lattice dispersion relation is the same as for infinite lattice so that Fourier integrals are simply
replaced by sums:

gx(s) =
1

V

∑
k

e−ikx

s+ 2
∑d

i=1(1− cos ki)
, ki =

2πli
Li

, li = 0, Li − 1.
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Note the evaluation formula

g(s;x1, . . . , xd) =
1

Ld

∑
kd

e−ikdxdg (s+ 2[1− cos k];x1, . . . , xd−1)

=
g(s;x1, . . . , xd−1)

Ld
+

2

Ld

[
Ld−1

2

]∑
l=1

cos

(
2πlxd
Ld

)
g

(
s+ 2

[
1− cos

2πl

Ld

]
;x1, . . . , xd−1

)
+ I {Ld is odd} (−1)xdg(s+ 4;x1, . . . , xd−1)

Ld
.

If L1 = L2 = . . . = L then the mean square displacement

〈
δx2
〉
=
∑
x

(
x21 + . . .+ x2d

)
gx(s) =

2d

s2
+
dL2

2s
− dL2

2

(
1 +

4

sL

)
g0(s)

=
d(L− 1)(2L− 1)

6s
+

(L2 − 1)(L2 − 15L+ 11)

360
+O(s).

In the time domain we have the similar to (2.2) expression:

gx(t) = e−2dt
d∏

i=1

Ixi,Li(2t),

where

Ix,L(2t) =
1

L

L−1∑
l=0

exp

[
2t cos

(
2πl

L

)
− i

2πl

L
x

]
≡ e2t

L
+

2

L

[L−1
2 ]∑

l=1

e2t cos
2πl
L cos

(
2πlx

L

)
+ I {L is odd} (−1)xe−2t

L
.

2.6. Square lattice

The natural basis is

h0 =
qK
4
, h1 =

K − 1

4
, h2 =

(2− q2)K − 2E
4q

, where K =
2

π
K(q), E =

2

π
E(q). (2.22)

At q = 1 Green’s function diverges but the function δgxy = gxy − g00 is finite. It can be calculated by use of
the same recurrence relations as for g, starting from δg00 = 0, δg10 = −1/4, and δg11 = −1/π. In particular,

δgxx =
1

2π

[
ψ

(
1

2

)
− ψ

(
x+

1

2

)]
.

The density of states is given by

ρ(σ) =
1

2π2
K

(√
σ(8− σ)

4

)
, 0 ⩽ σ ⩽ 8. (2.23)

Path expansion series are hypergeometric:

hxy(q) =
(q
4

)x+y+1 (x+ y)!

x!y!
4F3

(
x+ y + 1

2
,
x+ y + 1

2
,
x+ y + 2

2
,
x+ y + 2

2
;x+ 1, y + 1, x+ y + 1; q2

)
and can be calculated recurrently:

hxy(q) =
∞∑
n=0

an, an = an−1
[(2n+ x+ y)(2n− 1 + x+ y)]2

n(n+ x)(n+ y)(n+ x+ y)

(q
4

)2
, a0 =

(x+ y)!

x!y!

(q
4

)x+y+1
.
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Symmetry reduction works as follows:

L∑
x,y=−L

φ (gxy) = φ (g00) + 4

L∑
x=1

φ (gx0) + 4

L∑
x=1

φ (gxx) + 8

L∑
x=2

x−1∑
y=1

φ (gxy) [lat2sqadd],

L∑
x,y=−L

φ
(
∆1gxy

)
= φ

(
∆1g00

)
+ 2

L∑
x=1

φ
(
∆1gx0

)
+ 2

L∑
y=1

φ
(
∆1g0y

)
+ 4

L∑
x,y=1

φ
(
∆1gxy

)
,

L−1∑
x=−L

L∑
y=1−L

φ
(
∂1∂−2gxy

)
= 2

L−1∑
x=0

[
φ
(
∂1∂−2gx,x+1

)
+ φ

(
−∂1∂−2gx,x+1

)]
+ 4

L−1∑
x=1

x∑
y=1

[
φ
(
∂1∂−2gxy

)
+ φ

(
−∂1∂−2gxy

)]
.

Evaluation of Green’s function at any point can be performed by the alternative recurrence scheme described
in Ref. [Morita71]. Starting from g00 and g11 we calculate the diagonal elements by the relation

g(x+ 1, x+ 1) =
4x

2x+ 1
(2q−2 − 1)g(x, x)− 2x− 1

2x+ 1
g(x− 1, x− 1), x ⩾ 2.

Then the rest of the points can be calculated recursively column by column:

g(1, 0) = q−1g(0, 0)− 1

4
,

and for all the subsequent columns:

g(x+ 1, 0) = 4q−1g(x, y)− g(x− 1, 0)− 2g(x, 1),

g(x+ 1, y) = 4q−1g(x, y)− g(x− 1, y)− g(x, y − 1)− g(x, y + 1), y = 1, . . . , x− 1,

g(x+ 1, x) = 2q−1g(x, x)− g(x, x− 1).

2.7. Simple cubic lattice

Green’s function of the simple cubic lattice can be expressed in terms of the complete elliptic integrals
multiplied by rational functions of Joyce’s ξ variable [Joyce02] [lat3sc q2xi,lat3sc xi2q,lat3sc xi2k]:

ξ2 =
1−

√
1− q2/9

1 +
√
1− q2

, q =
6ξ
√
(1− ξ2)(1− 9ξ2)

1− 9ξ4
. (2.24)

Formally the Green’s function can be written in terms of K2, E2, and KE with the argument given by k3(ξ) in
Eq. (4.7). However, this basis is degenerate at q = 0, therefore we will use their combinations with different
asymptotics at ξ → 0:

K ∼ 1, L = K − E ∼ 8ξ3, K1 = 8ξ2K − (1− ξ)(1 + 3ξ2)L ∼ 8ξ2, K2 = 8ξ3K − (1− ξ)2(1− 3ξ2)L ∼ 16ξ4.
(2.25)

Now the basis (1.52) for recurrent evaluation of the Green’s function and its derivatives can be written as
[lat3scB]

h0 =
q

6

(1− 9ξ4)

(1− ξ)3(1 + 3ξ)
K2, (2.26)

h1 ≡ h(1,0,0) =
h0
q

− 1

6
, (2.27)

h2 ≡ h(1,1,0)
3

64q

1

(1− 9ξ4)

[
K2

1

(1 + ξ)(1− 3ξ)
+

(1 + 3ξ)K2
2

ξ2(1− ξ)

]
− 2h3

q
, (2.28)

h3 ≡ h(1,1,1) =
3

64

K1

(1 + ξ)(1− 3ξ)

K2

ξ2(1− ξ)
. (2.29)
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Figure 13: Triangular lattice coordinate system and
notations. Cartesian vectors corresponding to k1 and
k2 are shown as blue arrows. Recurrence scheme for
evaluation of g(3,2) is shown by colored bonds.

Figure 14: Two approximations of path expansion
coefficients for triangular lattice.

Representation in terms of Heun G functions regular at q = 0 [Guttmann10] [lat3scho H0]:

h0(q) = qH

(
9,

3

4
;
1

4
,
3

4
, 1,

1

2
; q2
)2

(2.30)

and at q = 1 [lat3scho H1]:

h0(q) = q

[√
h0(1)H

(
−8,− 9

16
;
1

4
,
3

4
,
1

2
, 1; 1− q2

)
−
√
3(1− q2)

8π
√
h0(1)

H

(
−8,−69

16
;
3

4
,
5

4
,
3

2
, 1; 1− q2

)]2
(2.31)

Value at s = 0 [Joyce02]:

ξ =

√
2− 1√
3

, 1− 9ξ4 = 4
√
2(
√
2− 1)2, (1− ξ)2 =

4

3

√
3−

√
2√

3− 1
, (1− ξ)(1 + 3ξ) =

4√
3

√
2− 1√
3− 1

, (2.32)

k =
(
√
2− 1)(

√
3− 1)√√

3−
√
2

, h0 =

√
6(
√
2 + 1)

8
k2K2 =

√
3− 1

192π3
Γ

(
1

24

)2

Γ

(
11

24

)2

[lat3scgo0]. (2.33)

§3. Other lattices

3.1. Triangular lattice

The Green’s function of the triangular lattice was derived in Ref. [Horiguchi72]. A convenient coordinate
system is shown in Fig. 13. In notations of Eq. (1.21), we chose the following bond vectors: e1 = e13, e2 = e23,
e3 = e21. As common for hexagonal symmetry (and Ad root system), each point (x, y) can be represented
by a triple (x1, x2, x3) = (x, y,−x − y). In this representation the point symmetry of the lattice coincides
with the symmetry of (x1, x2, x3) with respect to permutations and inversion. In addition, the shortest-path
distance to the origin is given by |x| = maxi |xi|, the Euclidean distance ∥x∥2 = x2 + y2 + xy ≡ (

∑
i x

2
i )/2,

V1 =
√
3/2, and D = 3/2. Alternative coordinate systems include the crystallographic one with b-axis oriented

along (−1, 1) direction and the rectangular one either body-centered or with missing sites (gray unit cell in
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Figure 15: Error in evaluation of the Green’s function
of the triangular lattice at origin by path expansion.

Figure 16: Approximation of the Green’s function of
the triangular lattice at origin by q/8 + RΦ

0;1(q, ε∞).
The exact function is shown in black.

Fig. 13). The latter is used in Ref. [Horiguchi72]. Other uncommon notations of Ref. [Horiguchi72] include the
rescaled Green’s function G = 2g and its argument t = s/2 + 3. The fundamental domain is defined by the
inequality 0 ⩽ y ⩽ x and is marked by dash line in Fig. 13 as 1/12 of the plane.

For the triangular lattice

S(k) = −6 + 2 cos k1 + 2 cos k2 + 2 cos k3, k3 = k2 − k1. (3.1)

This band dispersion has three singularities: S(0, 0) = 0, S(π, π) = −8, and S(2π/3,−2π/3) = −9. To compute
“path expansion” coefficients, we substitute k1 = k′1+k

′
2, k2 = 2k′2 so that k′1,2 are wave-vectors of a rectangular

lattice. In these notations

S = −8 + 4(cos k′1 + cos k′2) cos k
′
2, k1x+ k2y = k′1x+ k′2(x+ 2y). (3.2)

Now by using Eq. (1.36) we obtain

N(x,y)(n) =

[n/2]∑
k=0

(
n+ |x|
k, k + |x|

)(
2(n− k) + |x|
n− k + z

)
,

{
|x|
z

}
=

{
max
min

}
(|x|, |y|, |x+ y|), (3.3)

with q = 1/(1 + s/8) so that N is not the number of paths.
The Green’s function can be written in terms of the complete elliptic integrals with the argument given by

k3(ξ) in Eq. (4.7):

h0 =

√
ξkK
4

, h1 ≡ h(1,0) =

(
4

3q
− 1

3

)
h0 −

1

6
, h2 ≡ h(1,1) =

(
8

q2
− 20

3q
− 1

3

)
h0 +

1

3
− E

2
√
ξk
, (3.4)

where

ξ2 =
q

8 + q
=

1

s+ 9
, q =

8ξ2

1− ξ2
, so that

√
ξk ∼ q

2
at small q and ξ =

1

3
for q = 1. (3.5)

Density of states is given by

ρ(σ) =

√
ξ

4π
×

{
K(1/k), 0 ⩽ σ < 8 (1/3 ⩽ ξ < 1),

kK(k), 8 < σ ⩽ 9 (ξ > 1),
k = k(−ξ). (3.6)
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For simplectic honeycomb lattice (1.51) reduces to

1

xi

d+1∑
j=1,j ̸=i

Dijgx = const(i), i = 1, . . . , d, (3.7)

which for d = 2 in the selected above basis simplifies to

(D1 −D3)gx
x1

=
(D2 +D3)gx

x2
. (3.8)

By solving this equation with respect to one of Di we exclude gx+ei from the Laplace equation and obtain the
recurrence along one of the two remaining directions as illustrated in Fig. 13. In particular, for the recurrence
along e1 we obtain:

(x+ y)g(x+1,y) = (s+ 6)xg(x,y) − (x− y)g(x−1,y) − 2xg(x,y−1) − (2x+ y)g(x+1,y−1) + yg(x−1,y+1). (3.9)

The propagator can be obtained from Eq. (1.17):

g̃(x,y)(t) = e−6t
∑
z∈Z

Ix+z(2t)Iy−z(2t)Iz(2t). (3.10)

3.2. Face-centered cubic lattice

For the site at the origin there are 12 nearest neighbors located at {±ei, ei ± ej} in the unit vectors of the
primitive cell or {±1

2e
i ± 1

2e
j} in the unit vectors of the cubic cell. Let choose the cubic cell. Then

S(k) = −12 + 4 cos
k2
2

cos
k3
2

+ 4 cos
k3
2

cos
k1
2

+ 4 cos
k1
2

cos
k2
2
. (3.11)

The no-integral formula for g0 was obtained in [Morita71] and then improved in [Joyce94]:

g0(s) =
3√

16 + s
(
2
√
12 + s+

√
s
) [ 2

π
K(k)

]2
, where k2 =

1

2

(
1−

√
s

16 + s

)
− 12√

16 + s
(
2
√
12 + s+

√
s
) .

(3.12)

3.3. Diamond lattice

Diamond lattice consists of two fcc lattices: the first one has its origin at
(
1
8 ,

1
8 ,

1
8

)
in the cubic cell, and

the second one is symmetric by the inversion. To use the lattice symmetry it is convenient to use the variable
a = s+ 4 instead of s. The solution of (1.13) is

ĝ(k) =

(
a 1 + e−i

k2+k3
2 + e−i

k3+k1
2 + e−i

k1+k2
2

1 + ei
k2+k3

2 + ei
k3+k1

2 + ei
k1+k2

2 a

)
a2 − 4− 4 cos k2

2 cos k3
2 − 4 cos k3

2 cos k1
2 − 4 cos k1

2 cos k2
2

. (3.13)

It is easy to see that

g110 (a) = agfcc0 (a2 − 16) ≡ 3

2
√
a2 − 4 +

√
a2 − 16

[
2

π
K(k)

]2
, (3.14)

where

k2 =
1

2
+

8− a2

2a3

√
a2 − 16− 8

a3

√
a2 − 4.

3.4. Body-centered cubic lattice

See [Morita71]

S(k) = −8 + 8 cos k1 cos k2 cos k3,

g0(s) =
1

8 + s

[
2

π
K(k)

]2
, where k2 =

1

2

(
1−

√
1−

(
1 +

s

8

)−2
)
.
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3.5. Anisotropic lattices

For anisotropic hypercubic lattice

g̃x(t) =

d∏
i=1

exp

[
−(αi + βi)t+

1

2
ln

(
αi

βi

)
xi

]
Ixi

(
2
√
αiβit

)
,

where αi = wx,x+ei and βi = wx,x−ei . Some averages:

⟨xi⟩ = (αi − βi)t,
〈
δx2i
〉
= (αi + βi)t.

§4. Appendix

4.1. Some properties of finite difference operators

For any function f on Z let us define the following finite difference operators:

(∂−f)x = fx − fx−1, (∂+f)x = fx+1 − fx, (∆f)x = fx+1 + fx−1 − 2fx.

Here are some identities:

(∂−f)x = (∂+f)x−1, (∂+f)x = (∂−f)x+1, ∆f = ∂−∂+ = ∂+∂− = ∂+ − ∂−.

If the summation is without boundaries then∑
x

fx(∂
+g)x = −

∑
x

gx(∂
−f)x,

∑
x

fx(∆g)x =
∑
x

gx(∆f)x.

But unlikely to the differential operators the finite difference of a product is more complicated:

∂±(fg)x = fx±1 ∂
±gx + gx ∂

±fx,

∂−(f ∂+g)x = fx(gx+1 − gx)− fx−1(gx − gx−1),

∂+(f ∂−g)x = fx+1(gx+1 − gx)− fx(gx − gx−1).

For the hypercubic lattice, the function G11(x1, . . . , xd) = ∆1gx1e1+...+xded
is symmetric with respect to

change of sign at x1 and is fully symmetric for the rest of arguments. The function G12(x1, . . . , xd) =
∂1∂−2gx1e1+...+xded

has special symmetry for the first two arguments and is fully symmetric for the rest of
arguments, namely:

G12(x1, x2, . . .) = −G12(−x1 − 1, x2, . . .) = −G12(x1,−x2 + 1, . . .) = G12(x2 − 1, x1 + 1, . . .),

that matches the symmetry of the function (x1 + 1/2)(x2 − 1/2).

4.2. Estimates and inequalities for Green’s function for s ⩾ 0

For a general graph 0 < gxy < gxx < 1/s.
For a primitive isotropic lattice (w = 2δ)

sge1 + 2(δ − 1) (ge1 − ge1+e2) + (ge1 − g2e1) = (g0 − ge1) .

From (1.34) it follows that ge1+e2 > g2e1 and by combining this with the above identities we obtain the series
of inequalities

∂2ge1 < ∂1ge1 < ∂1g0 ≡
−∆1g0
δ

⩽
1

2δ
, −∆2ge1 ⩽ ∆1ge1 < −∂1∂−2g0,

−∂1∂−2g0 < ∂1g0 ⩽
1

2δ
, ∆1ge1 ⩽ 2(δ − 1)∂2ge1 <

δ − 1

δ(2δ − 1)
, −∆2ge1 = 2∂2ge1 <

1

δ(2δ − 1)
.
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4.3. Finite and semi-infinite one-dimensional lattices

For a ring of length L

gx =
α

1− α2

αx + αL−x

1− αL
≡

coshκ
(
x− L

2

)
2 sinhκ sinh κL

2

, x = 0, . . . , L− 1. (4.1)

The spectrum is

sn = −4 sin2
πn

L
, n = 0, . . . , L− 1,

and sL−n = sn.

For X = Z+

gyx =
α

1− α2

(
α|x−y| + αx+y+1

)
, (4.2)

so that

g̃yx(t) = e−2t [Ix−y(2t) + Ix+y+1(2t)] .

For a segment of length L

gyx =
α

1− α2

αL

1− α2L

(
α|x−y|−L + αL−|x−y| + αx+y+1−L + αL−1−x−y

)
≡

coshκ
(
L− x ∨ y − 1

2

)
coshκ

(
x ∧ y + 1

2

)
sinhκ sinhκL

, x = 0, . . . , L− 1. (4.3)

For an open segment of length L (particle is absorbed at x = −1 and x = L)

gyx =
α

1− α2

αL+1

1− α2L+2

(
α|x−y|−L−1 + αL+1−|x−y| − αx+y+1−L − αL−1−x−y

)
≡ sinhκ (L− x ∨ y) sinhκ (x ∧ y + 1)

sinhκ sinhκ(L+ 1)
, x = 0, . . . , L− 1. (4.4)

Note that

s
L−1∑
x=0

gyx = 1− αy+1 + αL−y

1 + αL+1
.

4.4. Some properties of complete elliptic integrals

Complete elliptic integrals allows for nontrivial changes of argument via modular transformations as dis-
cussed in [Joyce98] in relation to simple cubic Green’s function. These transformation are performed with use of
the elliptic modulus function k2(q) = (θ2(0, q)/θ3(0, q))

4 and its inverse, nome function q(k2) = exp(−πK′/K),
where prime denote complementary arguments and integrals. All elliptic integrals are rescaled by 2/π:

K ≡ K(k) =
2

π
K(k), E ≡ E(k) = 2

π
E(k). (4.5)

An infinite series of modular transformations is defined by

kn(q) = k(qn), Kn = K(kn), n ∈ N =⇒ K′
n

Kn
= n

K′
1

K1
. (4.6)

The case of n = 3 is considered in Ref. [Joyce98] using the parametrization

k21 =
16ξ

(1− ξ)(1 + 3ξ)3
, k23 =

16ξ3

(1− ξ)3(1 + 3ξ)
, 0 ⩽ ξ <

1

3
, (4.7)

so that

k′1
2
=

(
1 + ξ

1− ξ

)(
1− 3ξ

1 + 3ξ

)3

, k′3
2
=

(
1 + ξ

1− ξ

)3(1− 3ξ

1 + 3ξ

)
. (4.8)
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and
1− ξ

1 + 3ξ
= 2F1

(
−1

6
,
1

2
;
2

3
, k21

)2

. (4.9)

Then the following identities are valid:

k3
k1

= ξ
1 + 3ξ

1− ξ
,

k′3
k′1

=
1 + ξ

1− ξ

1 + 3ξ

1− 3ξ
,

√
k1k3 +

√
k′1k

′
3 = 1, k3K3 = ξk1K1 (4.10)

For ξ > 1/3 the following two transformations, t1,2 allows for the analytic continuation of the above formulas:

t1(ξ) =
1− ξ

1 + 3ξ
, t2(ξ) = −ξ, ti(ti(ξ)) = ξ, i = 1, 2, t1(0) = 1, t1

(
1

3

)
=

1

3
. (4.11)

The elliptic modulus transforms as follows:

k(ξ) k(ξ̃) = 1,
1

k2(ξ)
+

1

k2(−ξ)
= 1 ⇐⇒ k(−ξ) = i

k(ξ)

k′(ξ)
, (4.12)

where ξ̃ = t1(ξ) and k can be k1 or k3 here and below. Therefore, t1 provides the analytic continuation to
1/3 < ξ < 1 (k2 > 1):

kK(k ± i0) = K
(
1

k

)
± iK′

(
1

k

)
for any k, K′

(
1

k(ξ)

)
≡ K

(
1

k(−ξ)

)
for

1

3
< ξ < 1, (4.13)

whereas t2 extends formulas to ξ > 1 (k2 < 0):

K(k) = k′(−ξ)K (k(−ξ)) . (4.14)

4.5. Series at s = 0 for hypercubic lattice: implementation

Using the formulas

Z(
√
z)′ =

(
d

2
− 1

)
Z

z
− zd/2−2

2
χd, χd = I {d is even} ,

−qn
(
q1−nfn(q)

)′
= (n− 1)fn + 2(1− z)f ′n,

−qnh′n =
[
(n− 1)An + 2(1− z)A′

n − χd(1− z)zd/2−2Bn

]
+ Z

[
(n− 1)Bn + 2(1− z)B′

n + (d− 2)(1/z − 1)Bn

]
,

and expanding A and B in series: {
An

Bn

}
=

∞∑
k=0

{
ank
bnk

}
zk,

(n− 1)A+ 2(1− z)A′ =
∞∑
k=0

[(n− 1− 2k)ak + 2(k + 1)ak+1] z
k

(1/z − 1)B = b0/z +

∞∑
k=0

(bk+1 − bk)z
k (index n is omitted for clarity)

we obtain recurrence relations for ank and bnk. For the singular part, there is a secular equation for bn0:

dbn0 = nbn−1,0 + (d− n)bn+1,0 =⇒ bn0 = const.

The initial conditions (for the recurrence) bn0 = 0, a0k = δkm, k = 0, . . . , d− 2 generate d− 1 regular solutions
Amn with B = 0, whereas the conditions bn0 = 1, a0k = 0, k = 0, . . . , d− 2 give the singular solution Adn, Bdn.
Note that in odd dimensions Adn = 0 because χd = 0.

Coefficients Cm for d > 3 can be determined either from gn(0) or g
(n)
0 (0). Also they can be determined

from series of Ref. [Joyce03a]:

2h0(q) =
∞∑
k=0

CJ
kw

k
J + w

d/2−1
J lnwJ

∞∑
k=0

DJ
kw

k
J , wJ ≡ wJoyce = d(q−1 − 1).
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Note that

lnwJ = ln

[
d

1− q2

q(1 + q)

]
=⇒ pJ0 =

√
d

2
.

Coefficients DJ
k can be calculated by the formula

DJ
k =

(−1)kaJk(d)

(−2π)d/2Γ(k + d/2)
, where 2F0(1/2, 1/2; ; z/2)

d =

∞∑
k=0

aJk(d)z
k.
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